UNIL Logo DSAP Powered by Nuvolos
Home Syllabus Weekly Materials Assignments Projects Help & Support Cite

Weekly Materials

Lectures, practice sessions, and assignments for each week

NOW

Week 0-1: Course Overview

Setup • Unix/Linux • Git

Open Week 0 →

Part I: Python Foundations

0-1 Sep 15

Course Overview

Setup • Unix/Linux • Git

2 Sep 22

No Class

Swiss Federal Fast

3 Sep 29

Python Fundamentals I

Variables • Control flow • Strings • Git

4 Oct 6

Python Fundamentals II

Functions • Data structures • Recursion

5 Oct 13

Special Session: Generative AI

LLMs • Autonomous agents (Anna)

6 Oct 20

Python Fundamentals III

OOP • Classes • Inheritance • Testing

Part II: Statistical Learning

7 Oct 27

Linear Regression

Supervised Learning • Gradient Descent

8 Nov 3

Classification

k-NN • Naive Bayes • Decision Trees

9 Nov 10

Unsupervised Machine Learning

k-Means • GMM • PCA • Clustering

10 Nov 17

Deep Learning Primer

MLPs • Backpropagation • TensorFlow

Part III: Advanced Topics

11 Nov 24

Best Practices in Data Science

Libraries • EDA • Feature Engineering

12 Dec 1

Introduction to HPC

Shared/Distributed Memory • Parallelization

13 Dec 8

HPC with Python

Numba • JAX • Multi-threading

14 Dec 15

Capstone Project Presentations

Final presentations • Course wrap-up

Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Cite as: Scheidegger, S., & Smirnova, A. (2025). Data Science and Advanced Programming 2025. HEC Lausanne, University of Lausanne. View citation formats →

Made with 💙 by Anna Smirnova, Prof. Simon Scheidegger, and Claude 🤖

Powered by Nuvolos