Session 10: Neural Networks Without the Hype
Common Architecture Patterns
Binary Classification (spam/not spam, pass/fail):
model = keras.Sequential([
keras.layers.Dense(64, activation='relu', input_shape=(features,)),
keras.layers.Dense(1, activation='sigmoid')
])
model.compile(loss='binary_crossentropy', metrics=['accuracy'])
Multi-class Classification (iris species, digit recognition):
model = keras.Sequential([
keras.layers.Dense(64, activation='relu', input_shape=(features,)),
keras.layers.Dense(num_classes, activation='softmax')
])
model.compile(loss='categorical_crossentropy', metrics=['accuracy'])
Regression (price prediction):
model = keras.Sequential([
keras.layers.Dense(64, activation='relu', input_shape=(features,)),
keras.layers.Dense(1)
])
model.compile(loss='mse', metrics=['mae'])