Session 9: Clustering Without Crying
Visualizing Clusters
2D data:
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(kmeans.cluster_centers_[:, 0],
kmeans.cluster_centers_[:, 1],
marker='X', s=200, c='red')
High-dimensional data → reduce to 2D first:
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
X_2d = pca.fit_transform(X_scaled)
plt.scatter(X_2d[:, 0], X_2d[:, 1], c=labels, cmap='viridis')
Always visualize to sanity-check your clusters!