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I. INTRODUCTION

One of the problems which game theorists face in their
profession is the problem of computing Nash Equilibria of
zero sum games. In research applications, most of the zero
sum games of interest have exponentially many strategies
but highly structured payoffs. Among the class of zero sum
games a well known game is the Colonel Blotto Game. In
the Colonel Blotto game, players distribute a pool of troops
among a set of battlefields with the goal of maximizing
the likelihood of winning against an opponent or a set
of opponents given a specific payoff function establishing
the award winning rule of a battlefield. His importance
among other zero sum games has grown since his first
publication in 1921 by french mathematician Emile Borel
because of its applicability with real life situations. Indeed,
Colonel Blotto game is used as model of a wide range of
applications characterized by limited resources and a set of
stylized battlefields where two or more opponents face each
other. Examples are U.S. presidential elections, innovative
technology competition etc. . The main challenge in resolving
a Colonel Blotto game arises from the size of the strategy
space for which standard methods for computing equilibria of
zero sum games fail to be computationally feasible. Despite
the very important applications, to date only few solutions to
special variants are known.

A. An overview of zero sum games

It is well know that every finite game admits a Nash
equilibrium i.e. a profile of strategies for which no player
can benefit from an unilateral deviation. However, there is no
obvious way on how to find a Nash-equilibrium. Computing

a Nash equilibrium for a normal form game is know to be
a PPAD-complete problem even for two players game as
proved by Chen and Deng (2006).

This issue, motivates the study of games for which the
equilibrium can be computed efficiently, which often reduces
in finding structures in games which can be exploited to
admit computational results. The most well known class of
such games is the class of zero-sum two players games in
which player 2’s payoff is the negation of player 1’s payoff.
The normal form representation of such zero sum game is
a matrix which specifies the payoff for player 1. This class
of games is well used for modelling perfect competitions
among two parties. Using Linear Programming methods, can
be shown that because the payoff of a zero sum game is a
matrix, a Nash-equilibrium can be computed in polynomial
time. Hence, time polynomial is the number of strategies to
each player. However, in case where the number of strategies
is exponential, the above discussion fails to guarantee efficient
computations of equilibrium and an alternative approach is
warranted. For more information, refer to Ahmadinejad at al.
(2017), Behnezhad et al. (2018), Ferdowsi et. al (2018).

B. Colonel Blotto Game

In the standard configuration of Colonel Blotto game, two
colonels have a fixed pool of troops and face each other
over a set of battlefields. The two colonels simultaneously
divide their troops between the battlefields at the outset of
the game. In the original configuration, a colonel wins a
battlefield if the number of his troops dominates the number
of troops of the opponent. The final payoff to each colonel
is the number of battlefields won which can be weighted in
more advanced configurations. An equilibrium in this game is
a pair of colonel’s strategies, which is (potentially randomized)
a distribution of troops across battlefields, such that none of
the opponents has incentive to deviate his strategy. Although it
is a zero sum game, the number of strategies in Colonel Blotto
is exponential in the number of troops. Indeed, the ways to
partition n troops among k battlefields is given by the Stirling
partition number, which is asymptotically exponential in the
number of troops, and therefore, traditional approaches for
solving zero sum games do not yield computationally efficient
results.

Several efforts have been made to understand the equilibria
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and solve the equilibrium explicitly. Existing works consider
a continuous relaxation of the problem where troops are
divisible. A recent breakthrough came in a seminal work by
Roberson (2006) which proposes a solution of the equilibrium
in case of continuous game and equally weighted battlefields.
Another interesting contribution by Behnezhad et al. (2018)
which analyses games in which maximizing the expected
payoff deviates from the actual goal of the paper. In stan-
dard game theory configurations, mixed strategies are often
evaluated based on the expected payoff that they guarantee.
However, this is not always desirable because maximizing the
expected payoff and the likelihood of winning might differ.
An application of such configuration is the Colonel Blotto
game. They show that maximizing the expected payoff of a
player does not necessarily maximize the winning probabilities
for certain applications of the game. For instance, in U.S.
presidential campaigns, the player’s goal is to maximize the
probability of winning more than half the votes rather than
maximizing the expected number of votes.

II. FORMALIZATION OF THE COLONEL BLOTTO GAME

The simplest version of Colonel Blotto Game can be formal-
ized as follows. Two players simultaneously allocate a and b
troops over K battlefields. A pure strategy of player A is a K-
partition z = (z1, 22, ..., ) With Zfil x; = a and similarly
for player B. Defining u:!(x;,y;) as the payoff of player A
from the i-th battlefield, since the Colonel Blotto is a zero
sum game, we have that uf(a:l,y,) = —uB(z;,y;). The total
payoff of the game for player A is ha(z,y) = >, u (zi,y;)
and similarly for player B. Finally, a mixed strategy of each
player is a probability distribution over his pure strategies.

III. AN APPLICATION OF THE COLONEL BLOTTO GAME

The proposed configuration of Colonel Blotto game con-
siders a set of opponents, each playing independently and
empowered with 100 soldiers, which they can allocate in 10
battlefields numbered from 1 to 10 and each worth 1 to 10
points, corresponding to the identification number of the castle.
Battlefields are fought in order, starting from battlefield 1 to
10. For each couple of opponents, the allocation of troops on
the battlefields is compared starting from battlefield number 1
and so on. Whoever has the most soldiers on the battlefield
wins it (in the case of a tie no one gets points). Moreover, as
soon as one player has won three consecutive battlefields, all
remaining battlefields are conquered. An example is give in
the below table:

TABLE I
TABLE TYPE STYLES

Battlefields 1 2 3 4 5 6 7 8 9 10

Colonel 1 10 | 10 | 10 10 | 10 | 10 | 10 10 | 10 | 10

Colonel 2 5 10 | 15 17 | 8 5 5 15118 | 2

In this game, Colonel 1 wins battlefields 1,5,6,7,8,9 and 10
for a total score of 46, while Colonel 2, wins battlefields 3 and

4 for a total score of 7. Battlefield 2 is a draw and Colonel
1 wins battlefields 8 and 9 because he has already won the
consecutive battlefields 5,6, and 7.

In this configuration of the game, imagine it as a tournament,
each Colonel plays against each other and has to select,
simultaneously, their allocations on the battlefields in order to
maximize the average score of all the games of the tournament.

IV. PROPOSED SOLUTION

In this section I elaborate the proposed solution to maximize
the average score in the tournament. The approach imple-
mented is not based on analytical results from game theory but
rather on making a conjecture on which structure of strategies
is expected to yield a better average score. Once rationalized
the base approach, I propose and implement an algorithm
able to optimize, starting on this initial guess of benchmark
strategies, the average score given a set of opponents strategies.
In particular, starting from a set of player’s benchmark strate-
gies which performances are computed against a set of large
opponents strategies, a Stochastic Hill Climbing optimization
algorithm is implemented in order to select from a starting
strategy the optimal neighbor strategy.

As will be discussed later, two major challenges arises
from this problem. First, the variable space is large and the
number of possible strategies is asymptotically exponential in
the number of castles and initial endowment of troops which
makes the computing effort very high. For instance, given 10
castles and 100 initial troops, the possible game configurations
are given by the partitions of a set of n elements in k non
empty sets and is given by the Stirling number of second
kind. Second, the average score, which depends on the player’s
strategy and on the strategies of the opponents, which are
unknown at the time of the resource allocation and represent
a discrete domain, is a highly discontinuous function which
makes complex the implementation of ”standard” optimization
algorithms. Therefore it is required to implement an heuristic
algorithm which works in such context.

A. Algorithm Implementation

Assuming that all opponents are rational and have the same
objective of maximizing their average score, it is possible to
rationalize benchmark strategies from which to create oppo-
nent’s strategies. At a first look, one may think that in order to
maximize the average score, one should be better off by trying
to find the strategy which could win against any opponents.
However, interestingly, two considerations need to be taken
into account. First, such strategy does not exist. Indeed, for
any player’s configuration there exist at least a configuration
which beats such strategy. A similar consideration holds for
the average score, meaning that it is unluckily that a global
maxima exists and if so would be very difficult to find it given
the exponential number of strategies and the high discontinuity
of the score function. Second, the fact that castles have differ-
ent weightings, in combination with the take all” rule, makes
difficult to anticipate which castles might attract the highest
average score. Indeed, while the value of winning individual



first castles is low, the “take all” rule make them more valuable
on that account compared to last castles which instead have
higher individual value but low “take all” rule value. Finally,
even if such a preferred configuration of castle existed, rational
players would concentrate their choices on such castles which
would reduce the effective value of strategies targeting them.
This last observation relates to the idea that the value of a strat-
egy depends on ex-ante anticipation of opponents strategies
which make the problem more complex. Although relevant,
this is not taken into account in this project which focuses
instead in an “atomistic” allocation of resources by each player
meaning that no “strategic allocation” is taken into account.
Not considering the effect of strategy concentration and player
strategical anticipation is a good approximation when the
number of total tournament players is low compared to the
total configuration space. Intuitively, this space is extremely
large from a Manhattan distance point of view and it is
very unlucky without a very high number of participants
that players allocate troops in similar configurations from a
Manhattan distance perspective.

Following the above reasoning, I generate using six base

strategies a set of opponents strategies. Starting from these
strategies, random perturbation are computed in order to finally
obtain a set of opponents strategies.
The selected strategies are based on the conjecture that first
castles are more valuable than last ones give the “take all”
rule. Although a more rigorous approach would be needed
to validate this conjecture, it seams reasonable on several
accounts. I leave to the reader to develop an intuition about
it. These base strategies are represented below:

1) Opponents_group_A:
Base_opponent{1,1,40,24,14,5,0,0,0,0};
2) Opponents_group_B:
Base_opponent{1,1,35,25,20,3,0,0,0,0};
3) Opponents_group_C:
Base_opponent{1, 35,24, 20,5,0,0,0,0,0};
4) Opponents_group_D:
Base_opponent{1,40,1,0,25,8,5,0,0,0};
5) Opponents_group_FE:
Base_opponent{15,35,25,5,0,0,0,0,0,0};
6) Opponents_group_F"
Base_opponent{5,5,10,9,10,10,9,8,6,6};
7) Opponents_group:
Base_opponent{0,0,0,0,0,0,0,0,0,0};

With the exception of the 6th strategy which is the more
equilibrated among the other six, the first 5 strategies are
mostly focused on the value of the “take all” rule.

All the opponents strategies are collected in a database given
by a vector of vectors data structure in cpp. I use the database
to select among each group of strategies which ones have
the highest average score. These selected strategies are then
used as base strategies to search for local maxima using
the procedure “maxima_spp_detection_algorithm” which
implements the Stochastic Hill Climbing algorithm on possible
alternative configurations based on the Manhattan metrics. The

Manhattan metrics is selected given the discrete nature of the
space of the strategies configuration.

For each of the initial group of opponents strategies, I obtain a
vector of vectors containing local maxima of strategies facing
the entire database of opponents. Once the average score is
computed with the function ”Check_multi_score”, the strate-
gies are sorted based on their relative score using the function
“special_sort”. ”special_sort” allows to sort strategies based
on their relative score. These selected strategies are then used
to build a database of selected strategies named Selected
Database”.

Using the function "maxima_detection_algorithm”, which
finds local maxima starting from a base configuration (bal-
anced) of {5,5,10,9,10,10,9,8,6,6}, T generate a set of
strategies optimized to face the opponents strategies of
the ”Selected Database”. The “Selected_Maxima” strate-
gies are sorted and only the best are selected. These
”Selected_Maxima” are also evaluated on the full database
of opponents. Finally, a cross validation is performed on a
random cross validation set of opponents strategies. I compute
the score of the selected Maxima on this set of opponents
strategies. It is then possible to compute the weighted average
score of the selected maxima on the three different opponents
databases and sort the strategies on that average score measure.
The final output is a vector of vector which have the highest
average score on these 3 database of opponents strategies.
They represent local maxima in the “small” strategies con-
figuration space considered.

V. OPTIMIZATION STRATEGY

Stochastic Hill Climbing is a stochastic variant of the
standard Hill Climbing algorithm. The stochasticity comes
from the random choice of the uphill move among the set of
uphill moves. The Hill Climbing algorithm is a local search
algorithm. This type of algorithm are well suited to approach
optimizations of discrete valued functions. A famous applica-
tion relates to the “travelling salesman problem”. Similarly to
other optimization algorithm, the Hill climbing algorithm is
guaranteed to find optimal solutions only in convex problems
while in general finds only local optima. The simplicity of the
implementation makes it often used in artificial intelligence
problems. Importantly, the Hill Climbing is an “anytime”
algorithm meaning that it returns a possible solution at any in-
termediate iteration. This property is important in the Colonel
Blotto game given the difficulty to asses the local convergence.

In summary, as can be understood from the previous dis-
cussion, the choice of Hill Climbing algorithm over more
used optimization algorithm of similar nature, for instance
the (Stochastic) Gradient Descent algorithm, is given by the
discrete nature and high discontinuity of the problem at hand.

VI. RESULTS

In this section, I show the results from a given configuration
of the game. In particular I consider the below set up:

o Initial troops endowment for each player of 100;

o 10 castles with relative weight and “get all” rule;



o Opponents Database strategies:90

o Selected Database size:250

e Cross-Validation Database:1000
The procedure starts by creating the database of opponents
strategies by creating board configuration starting from bench-
mark strategies. In Figure 1, 15 strategies are created from
Benchmark Strategy A as illustrated above. Among these
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strategies, a subset are selected after evaluation the relative
score of each strategy in the set of originated strategies.
These selected strategies, see Figure 2, represent the ~’Selected
strategies” from Group A which are then used, together with
all the selected strategies from the remaining five groups to
build the ”Selected Database” of strategies. This is obtained
by generating strategies starting from these selected strategies
and finding local maxima for each group. The best performing
of these local maxima are then used to generate the ~’Selected
Database”. Figure 3 illustrates the newly generated strategies

=STARTING PLAYER SELECTION STARTEGIES:

TARTING STARTEGIES

Selected_A Strategies

Selected_A[1]
Selected_A[2]
Selected_A[3]
Selected_A[4]
Selected_A[5]

score
score
score
score
score

Selected_A[1] = [1, 6, 40, 28, 1
Selected_A[2] = [11, 2, 40, 24, 14, 9,

Selected_A[3] = [7, 6, 40, 28, 14,
Selected_A[4] = [1, 3, 42, 29, 20, 5,

Selected_A[5] = [2, 2, 48, 29,

Fig. 2.

from the Group A selected strategies. The best performing
will be then selected to form the ”Selected Database”. Figure

New Strategies created starting from the Selected_A

Maxima_A[1]
Maxima_A[2]
Maxima_A[3]
Maxima_A[4]
Maxima_A[5]
Maxima_A[6]
Maxima_A[7]
Maxima_A[8]
Maxima_A[9]
Maxima_A[10]
Maxima_A[11]
Maxima_A[12]
Maxima_A[13]
Maxima_A[14]
Maxima_A[15]
Maxima_A[16]
Maxima_A[17]
Maxima_A[18]
Maxima_A[19]
Maxima_A[20]
Maxima_A[21]
Maxima_A[22]
Maxima_A[23]
Maxima_A[24]
Maxima_A[25]
Maxima_A[26]
Maxima_A[27]

score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score
score

43.1222
43.1222
43.2111
43.3556
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4 illustrates the selected local maxima from the selected group
strategies. Only top 300 strategies are selected.

*¥kkMaxima Detection Algorithm with Selected Databasexkx

maxima_detection_algorithm with 1000 starting_points and 5 restarts
tooks 42588584ticks, or 42.5886seconds to calculate it.

Printing the best 300 choises (if there are more than 300 strategies)
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Selected_Maxima[27]

Selected_Maxima[28] = [19, 8, 12,
Selected_Maxima[29] = [6, 7, 9, 31, 17, 21, 2,
Selected_Maxima[3@] = [1e, 8, 31, 8, 12, 7, 11,
Selected_Maxima[31] = [1e, 8, 31, 1e, 12, 5, 11,

Selected_Maxima[32]
Selected_Maxima[33]
Selected_Maxima[34]

= 31, 3, 12, 17, 7,
12, 10, 33, 7, 7,
12, 27, 16, 7, 2,
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o, 21, 22, 24, 11, 3, @, 0]
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11, 8, o, 26, 22, 21, 7, 3, 1, 1]
= [11, 8, 0, 21, 24, 24, 7, 3, 1, 1]

Selected_Maxima[45] = [1e, 8, 31, 1@, 12, 7, 11, 4, 5, 2]

Selected_Maxima[46]

= [10, 8, 31, 11, 12, 7, 11, 4, 3, 3]

Selected_Maxima[47] = [1e, 8, 31, 10, 12, 5, 16, 6, 2, 0]

Selected_Maxima[48]
Selected_Maxima[49]
Selected_Maxima[50]

Selected_Maxima[51] =
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= [1e, 8, 31, 10, 12, 7, 11, 5, 6, 0]
16, 8, 0, 11, 34, 24, 7, 0, 0, 0]
10, 7, 12, 26, 22, 7, 11, 3, 2, 0]
8, 8, 31, 11, 12, 7, 12, 5, 6, 0]

The Selected maxima are then tested against the Selected

Database”, the generic Database and the cross validation
database and only the best scoring strategies are finally se-
lected on each of the opponents sets of strategies. Figure 5
and Figure 6 illustrates this steps.



Best Selected Maxima

Best_Selected Maxima[1] score against Slctd_Data = 47.264
Best_Selected Maxima[2] score against Slctd Data = 47.416
Best_Selected Maxima[3] score against Slctd_Data
Best_Selected_Maxima[4] score against Slctd_Data

| Best_Selected_Maxima[1]
| Best_Selected_Maxima[2] ,
| Best_Selected Maxima[3] = [12, ) 4]
_| Best_Selected_Maxima[4] = [10, 8, 31, 2, 30, 7, 7, 3, 2, 0]
Best_Selected_Maxima[5] score against Slctd_Data = 47.66 Best_Selected Maxima[5] = , 47, 8, 12, 3, 11, 0, 2, 2]
Best_Selected_Maxima[6] score against Slctd_Data Best_Selected_Maxima[6]
N Best_Selected_Maxima[7]
Best_Selected_Maxima[8]

Best_Selected_Maxima[7] score against Slctd_Data
Best_Selected_Maxima[8] score against Slctd_Data
Best_Selected_Maxima[9] score against Slctd_Data
Best_Selected_Maxima[10] score against Slctd_Data
Best_Selected_Maxima[11] score against Slctd_Data =

Best_Selected_Maxima[10

Best_Selected_Maxima[11]
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Best_Selected_Maxima[13] ) 8, ) 16, 4 1
Best_Selected_Maxima[14] . 8, 46, 2, 4, 13, 11, 4, 2, 0]
Best_Selected_Maxima[15] = [10, 8, 46, 2, 4, 15, 7, 6, 1, 1]

Best_Selected_Maxima[12] score against Slctd_Data
Best_Selected_Maxima[13] score against Slctd_Data
Best_Selected_Maxima[14] score against Slctd_Data
Best_Selected_Maxima[15] score against Slctd_Data

Best_Selected_Maxima[1] score against Std_Data Best_Selected_Maxina[1] , 8, 31,2, 30,5, 7,3, 2, 2]
Best_Selected_Maxima[2] score against Std_Data Best_selected_Maxima[2] = [10, 8 , 0]
Best_Selected_Maxima[3] score against Std_Data Best_Selected_Maxima[3]

Best_Selected_Maxima[4] score against Std_Data - Best_Selected_Maxima[4]

Best_Selected_Maxima[5] score against Std_Data Best_Selected_Maxima[5]

Best_Selected_Maxima[6] score against Std_Data X !

Best_Selected_Maxima[7] score against Std_Data = !
Best_Selected_Maxima[8] score against Std_Data
Best_Selected_Maxima[9] score against Std_Data
Best.
Best_Selected_Maxima[11] score against Std_Dat

Best_Selected_Maxina[6]

Best_Selected_Maxima(7] 8,

Best_Selected_Maxina[8] 12, 3,

Best_Selected_Maxima[9] i 2, 7, 15,
8

Best_Selected Maxima[14] score against Std_Dat;
Best_Selected_Maxima[15] score against Std_Data

HkxScores against the random-cross-validation setisk
Number of opponents = 1000

The creation of a quasi-random database with 1080 opponents
tooks 1591ticks, or 0.001592seconds to calculate it.

score against random_Data Best_Selected_Maxima[1
score against random_Data 5 Best_selected_Maxima[2
score against random_Data 5 Best_Selected_Maxima[3
score against random_Data 5 Best_Selected_Maxima (4
score against random_Data = 44 Best_selected_Maxima[5
score against random_Data 516 Best_Selected Maximal[6.
score against random_Data
score against random_Data
score against random_Data
score against random_Data
score against random_Data
score against random_Data X
score against random_Data Best_Selected_Maxima[13] 4, ) 3]
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X Best_Selected_Maxima[15] = [10, 8, 46, 2, 4, 15, 7, 6, 1, 1]

Best_Selected_Maxima[9
Best_Selected_Maximal
Best_Selected_Maxima[11]
Best_Selected_Maxima[12]

score against random_Data

Finally the best performing strategies on the three sets of
opponents are ranked and identified. Figure 7 illustrates the
final results.

*kxMean value between selected_value, std_value and random_value in ascending orderxik
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Best_Selected_Maxima[11] mean score
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Best_Selected,
Best_Selected_Maxima[14] mean score = 45.9649
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Best_Selected_Maxima[14
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Total Number of Opponents Strategies in Databa: []
Total Number of Opponents Strategies in Selected_Database: 250
Total Number of Opponents Strategies in Cross_Validation: 1000

Fig. 7.

VII. FURTHER IMPROVEMENTS

This is clearly a preliminary version of the analysis of this
specific configuration of the Colonel Blotto game from a com-
putational point of view. Several questions remain unanswered
and several additional developments would be interesting to
explore.

VIII. CONCLUSIONS

In this project I have introduced the Colonel Blotto game
and highlighted its importance among the class of zero sum

games. Its relevance arises from the possibility of rationalizing
an array of empirical application into the game Blotto game
framework.

In the second section the discussion moves on the challenges
of finding optimal strategies in a tournament of Blotto Games.
In this configuration, a set of players face each other given an
initial endowment of troops and a fixed number of castles.
The game rules are different from the traditional Blotto game
and introduces different scoring weights to each caste. This
weighting scheme makes more difficult to anticipate the exact
value of each castle such that it is not easy to rationalize con-
centration of strategies around specific castles. The winning
strategy is the one which maximizes the average score against
a fixed set of opponents. Therefore, this project proposes
a procedure to find such strategy by rationalizing possible
opponents strategies and finding local maxima among possible
strategies chosen by the player.

The challenges of the optimization of the scoring func-
tion are twofold. First, the configuration space is large and
exponential in the number of castles and initial endowment
which make difficult to apply numerical procedures from a
computing complexity point of view. Second, the discrete
nature of strategies configuration and the high discontinuity of
the score function make less obvious the implementation of
optimization algorithm. To that end, in this project I proposed
to implement a Stochastic Hill Climbing algorithm to find local
maxima facing a set of opponents strategies.

This project clearly represent a first attempt to approach this
interesting problem and further research is needed.

IX. APPENDIX A: CODE EXAMPLES AND ALGORITHMS
A. Stochastic Hill Climbing Algorithm

L1117 77777777 77777777

/ *

//Function that looks for the highest local
starting from a given point assigned in
Strategy;

//Implements the stochastic hill climbing
algorithm;

// The choice of the stochastic hill climbing
algorithm is given by the high
discontinuity of the score function;

*/

vector<int>
stochastic_hill_climbing(vector<int>
Strategy, vector<vector<int> >
&Opponents_List, double &strategy_score)

//map<vector<int>,
strategy_score =
check_score (Strategy, Opponents_List);

double> dictionary;

bool change = true;
while (change)
{

change = false;

vector<vector<int> > Neighbors =
find_neighbors (Strategy);



random_shuffle ( Neighbors.begin(),
Neighbors.end() ); //we mix the
order of strategies close to A

for (int i=0; i<Neighbors.size() &&
change==false;i++)

{

double neighbor_value =

int 1 = rand_int (0,min(cnt,25 -
Base_opponent [k]));
Base_opponent [k] += 1;
cnt -=1;
}
}
Opponents.push_back (Base_opponent) ;

check_score (Neighbors[i], Opponents_List);

if (strategy_score<neighbor_value)

{
Strategy = Neighbors[i];
strategy_score = neighbor_value;
change = true;

}
}

return Strategy;

}
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return Opponents;

}
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C. Check Victory

B. Check Victory
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/* opponents_group generates a set of
allocations

based on an initial structure and adding some
random modifications;

The initial structure is given as input;

*/

vector<vector<int> > opponents_group (int
n,vector<int> &Base,int low, int high)
{
int missing_soldiers=100;
for (int i=0;i<Base.size();i++)
{
missing_soldiers —-= Basel[i];
}
vector<vector<int> > Opponents;
for(int i=0;i<n; i++)
{
vector<int> Base_opponent = Base;
int cnt = missing_soldiers;
while (cnt>0)
{
int k = rand_int (low,high);
if (k<5)
{
int 1 = rand_int (0,min(cnt, 70 -
Base_opponent [k]));
Base_opponent [k] += 1;
cnt -=1;
}
else 1if (k>7)
{
int 1 = rand_int (0,min(cnt,10 -
Base_opponent [k]));
Base_opponent [k] += 1;
cnt -= 1;
}
else

{
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/+ Function which establishes the score on a
match
given two configurations of the troops in
the castles;

*/

int check_victory(vector<int> &A, vector<int>

&B)

{ //function that calculates the result of
the first player in a lvsl
int win_strk_1=0;
int win_strk_2=0;
int point_1=0;
int point_2=0;
int i=0;
while (win_strk_1<3 && win_strk_2<3 &&
i<10) {
1f(A[i]>B[1]){
++win_strk_1;
point_1 += i+1;
win_strk_2=0;

}

else if(A[1]<B[i]){
++win_strk_2;
point_2 += i+1;
win_strk_1=0;

}

else(
win_strk_1=0;
win_strk_2=0;

}

i++;

} //end of while we go out if we have a
streak or if we have already checked
all the castles

if (i<10) {
if(win_strk_1==3) {

for (int J=i+1; J<=10; j++) {
point_1 += J;
}
}
else if (win_strk_2==3){
for (int j=i+1l; J3<=10; j++) {
point_2 += j;
}



}
else cout << "Error in implementation,
need to debug!"<< endl;

}
return point_1;
}
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D. Sorting Algorithm
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/ %

Function used to sort vectors A based on rule
based on second vector B;

It is used to sort strategies based on score;

x/

void special_sort (vector<vector<int> > &A,
vector<double> &B)

{ // function that takes as input 2 vectors
of the same length and that sorts both
through the values of the second
vector<Mixed_vec> C (A.size());
for (int 1=0;i<A.size();i++)

{
for (int j=0; 3<10; j++)
{
Cli]l.first[J] = A[i]1[3]1;
}
C[i].second = B[i];
}
sort (C.begin(), C.end(),
[] (const Mixed_vecé& 1, const
Mixed_vecé& r)
{
return l.second < r.second;
}
)i
for(int i=0;i<A.size();i++)
{
for (int 3=0; j<10; j++)
{
A[i][J] = Cl[i]l.first([]] ;
}

B[i] = C[i].second;

}
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E. Check Multi Score
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/ *
//Function that computes the average score
for a set of Player strategies
against opponents strategies;

*/

vector<double>
check_multi_score (vector<vector<int> >
&A, vector<vector<int> > &Opponents_List)
{ //Function that returns the score of
several strategies against a group of
opponents
vector<double> Scores (A.size());
for (int j=0; j<A.size(); j++)
{

long long int score=0;

for (int i=0; i<Opponents_List.size () ;i++)

{

score +=

check_victory (A[j],Opponents_List[i]);

}

Scores[]j] =

double (score) /Opponents_List.size();

}

return Scores;

}
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F. Search Maxima
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/ *

This function takes a strategy as input, the
number of search implemented in the
heuristic optimization via stochastic
hill climbing

a vector of vectors containing opponents
strategies and a minimum target score to
be obtained by the search for maxima.

Given the high dimentionality of the variable

space, it is difficult to assess
convergence of the score of a given
strategy;

The idea of combining the while and for loop
arises because either is very difficult
to find better strategies or you find
more easily.

*/

void search_maxima (vector<int>
initial_strategy, int number_restarts,
vector<vector<int> > &Opponents_List,
vector<vector<int> > &Maxima, double
gmin_score)

{ //Function that looks for local maxima

starting from a given point using several

times (times=number_restarts)
stochastic_hill_climbing
int counter = 0;
while (Maxima.size ()==0 &&
counter<number_restarts)
{
++counter;
double strategy_score = 0;
vector<int> Temp_strategy =

stochastic_hill climbing(initial_strategy,

Opponents_List, strategy_score);



if (strategy_score > min_score) // If
the score of the strategy is less
then the min_score
{ //
Temp_strategy is automatically
discarded
Maxima.push_back (Temp_strategy);

}

// Print Intermediate result:

//cout << "\n Local Maximum found
Maxima.size () << endl;

//cout << Maxima.size () << endl;

PP

for (int i=counter;i<number_restarts;i++)
{
double strategy_score = 0;
vector<int> Temp_strategy =

stochastic_hill climbing(initial_strategy,

Opponents_List, strategy_score);
if (strategy_score > min_score) // If
the score of the strategy is

less then the min_score

{ //

Temp_strategy is automatically

discarded

bool existing = false;

for (int j=0; j<Maxima.size () &&
existing==false; j++)

{
if (Temp_strategy==Maximal[7j])

existing=true;

}

if (existing==false)
Maxima.push_back (Temp_strategy);

}
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G. Maxima Detection Algorithm
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/ *

Function which search for local maxima
starting from a Benchmark configuration
and adding noise on the initial benchmark

strategies. Then Searches for local maxima
given set of opponents strategies;

The search for maxima uses the
search_maxima () function which implements
the stochastic hill climb algorithm.

*/

vector<vector<int> >
maxima_detection_algorithm(int
number_initial_ strategies, int
number_restarts, vector<vector<int> >
&Opponents_List, double min_score=0)

{ //Algorithm that looks for local maxima
starting from random guessing
vector<vector<int> > Maxima;
for (int 1=0; i<number_initial_strategies;
i++)
{
vector<int>
Base_start{5,5,5,5,5,5,5,5,0,0};
int cnt=60;
while ( cnt>0)
{

int k = rand_int (0,9);

if (k<8)

{
int 1 = rand_int (0,min(cnt,10));
Base_start [k] += 1;
cnt -= 1;

}

else

{
int 1 = rand_int (0,min(cnt,5 -

Base_start[k]));

Base_start[k] += 1;
cnt -= 1;

search_maxima (Base_start,
number_restarts, Opponents_List,
Maxima, min_score);

}

return Maxima;

}
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