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Abstract—Over the last decade, major hurricane and rainfall
events devastated numerous regions of the world. Proven to be
consequences of global warming [3]], these unfortunate events
have tremendous human and financial costs. In Switzerland,
flooding and landslides caused CHF 170 million of damages in
2017 and about 66% of them were caused by thunderstorms and
heavy precipitations [21]. Today there is a critical need to raise
more awareness on how global warming could impact cities and
populations. In the long term, the goal of this project is to provide
predictions on the elevation and movements of oceans, rivers and
lakes. This first study only focuses on lakes and more especially on
Lake Geneva. The data used were daily water elevation data from
January 1886 to April 2019 provided by the Swiss Federal Office
for the Environment and have been applied to a 2-layer long
short term memory (LSTM) network with a sliding window. Well-
suited for time-series prediction, LSTM generally provides good
results using less data than traditional water elevation prediction
models. After having chosen the model’s parameters through
hyperparameter tuning, the model has been implemented on
short-term, medium-term and long-term horizons and compared
to a Naive model. Short-term and medium-term LSTM models do
not seem to have a substantial predictive power when compared
to Naive models. With long-term horizons, LSTM models perform
better than Naive models showing higher predictive power for
lakes water elevations. They however seem to underestimate flash
water rise.

Index Terms—Long short term memory, increasing sea levels,
floods, neural networks, Lake Geneva

I. INTRODUCTION

Every year climate change seriously impacts an estimated
325 million people worldwide [1]]. Forming geological, bio-
logical and ecosystem alterations, climate change is leading
to numerous environmental risks, such as rising sea levels,
extreme weather and wildlife extinction or relocation [2].
These risks are impacting human lives in many different ways
such as food supply, health, migration, drinking water and
economic growth. One important risk that climate change has
is rising sea levels, which in turn impacts hurricane and rainfall
activities. As a consequence, the maximal potential energy
that storms can release, the rainfalls and the storm’s reach
increase drastically, causing more devastating hurricane and
rainfall events. In 2018, Hurricane Florence provoked terrible
casualties in the Carolinas with $24 million destruction costs
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and 52 direct and indirect fatalities. During the heaviest pre-
cipitating parts the hurricane rainfalls increased by over 50%.
This increase is larger than thermodynamics expectations and
would hence be due to human influence on climate change and
warmer sea temperature [3|]. When focusing on Switzerland,
storms cause damages of roughly CHF 307 million every
year - being the inflation-adjusted average between 1972 and
2017 [21]]. Moreover, a Cornell University research estimated
2 billion people could become climate change refugees by
2100 due to rising sea levels [4]]. Therefore, if flooding events
could be forecasted in advance and with high accuracy, the
risks and negative impacts associated could be mitigated. As
flooding risks are expected to rise dramatically in the next
decades and more especially in the United States, Central
Europe and North East and West Africa [5]], there is a serious
need for a predictive flooding model that could be adapted
to any water surface. The goal of this project is to provide
localities, institutions and individuals with such an open source
flooding model only needing daily elevation data of the studied
water surface. The first part of this project - that is described in
this paper - focuses only on lakes’ water elevation using Lake
Geneva as a basis. In the long term, it would be interesting to
extend the project to rivers and oceans. The data used for this
paper were Lake Geneva daily water elevation from January
1 1886 to April 1 2019 provided by the Swiss Federal Office
for the Environment (FOEN) and have been applied to a 2-
layer long short term memory (LSTM) network with a sliding
window. The LSTM deep learning method has been initiated
by Juergen Schmidhuber and Sepp Hochreiter in the mid-90s
and is a type of recurrent neural networks that can process any
kind of data [[15]. It is widely used by technology companies to
develop new products ranging from speech recognition engines
to automatic translation and music composition. Also well-
suited for time-series prediction, LSTM generally provides
good results using less data than traditional water elevation
prediction models.

In response to water challenges, this paper will first provide
background to the climate change issues and the different
techniques that can be used to forecast water behaviours.
Then it will discuss the methodology behind the LSTM as
well as the choice of parameters used for the modelization.
Finally, it will go over the results obtained using different



sliding windows and delays and conclude with the further
improvements that could be implemented in the future.

II. LITERATURE REVIEW
A. Climate change and increasing sea levels

According to IPCC (Intergovernmental Panel on Climate
change), global sea level will rise by up to 60 cm by 2100 as
a result of global warming and glaciers melting. However, as
polar ice sheet mass is declining at an accelerated pace, the
sea level rise (SLR) might even be 1 meter or more by 2100.
Tide gauge data since the late nineteenth century shows that
levels have risen by an average of 1.740.3 mm per year since
1950. In the early 1990s, because of technical advancements,
high-precision altimeter satellites began to measure SLR. The
mean rate from 1993 to 2009 amounts to 3.3 = 0.4 mm per
year. [6]]. This increase in sea levels is the result of temperature
rising that has characterized the past decades. Compared to the
late nineteenth century the Earth is about 0.8°C warmer today,
meaningfully impacting the environment. If the emissions of
greenhouse gases such as carbon dioxide are not brought under
control, temperature rise is expected to be much larger in the
future and is currently having severe consequences such as
(1) thermal expansion of sea waters, caused by ocean heating;
(2) melting mountain glaciers, adding significant amounts of
water to oceans; (3) disintegrated ice sheets in Greenland and
Antarctica, especially at their warmer peripheries. [6]

Fig. 1. Change in average surface temperature - 1986-2005 to 2081-2100
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Source: Michael Oppenheimer, Adapting to Climate Change: Rising Sea
Levels, Limiting risks. In: Social research Vol.82: No.2, 2015. Notes: 32 and
39 indicate numbers of models used to make each projection

B. Consequences in coastal areas

Heavy flooding and rainfall activities are amongst the most
important impacts of SLR. If added to that sea levels keep
increasing at an accelerated rate, flooded areas might even be
larger than expected [9]. Except if mitigation and adaptation
strategies are implemented by localities, coastal populations
will experience a significant increase in the frequency of minor
and major floodings over different SLR levels [10]. With a
sea levels increase of 61 centimeters, major floodings are
expected to occur multiple times a year and minor floodings
more than 150 days a year [10]. Furthermore, Li et al. (2009)
estimate that a one-meter sea level rise - plus a 10% surge
intensification - would put 67 million people at risk.

Whereas, Bamber and Aspinall (2013) estimated this number
to as high as 187 million people in this century. Hinkel et al.
(2014) found that if the sea level rises with 1.2 meter, it can
put up to 4.6% of the world global population in danger - i.e.
around 345 million people.

Low-elevation coastal zones are typically very populated.
In 2000, about 630 million inhabited these zones. These
population might grow up to 1.4 billion by 2060. Today, most
of the coastal areas with very high concentration of population
are located in Asia []. As an order of magnitude new internal
displacements caused by disasters represented 61% of new
displacements in 2017 compared to 39% caused by conflicts.
This represented 18.8 million displacements and 18 million
were weather-related (see Figure [2)

Fig. 2. Breakdown of new internal displacements due to natural disasters in
2017
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C. Consequences of floods

Because of global warming, rainfall is shifting patterns,
creating heavy rains and floods more frequently in many areas
of the world. In addition, human alterations of land, such as
engineering of rivers, destruction of natural protective systems,
and increased construction in areas of low-lying ground adja-
cent to a river, are contributing to higher risks of experiencing
destructive floods. Considered amongst the costliest natural
disasters, river floods have many consequences such as prop-
erty destruction, fatalities, contamination of surface water or
inundation of dry land. Those can in turn lead to poverty,
changes in biodiversity or waterborne diseases such as cholera

(12).



D. Machine Learning: A Tool for Water Level Forecasting

Governments are more and more under pressure to establish
reliable and accurate mapping of flood-risk areas and further
develop prevention and protection strategies. Nonetheless, the
dynamic nature of weather conditions makes the flooding
events’ time and location fundamentally complex to predict.
Although physically-based methods have been long used to
predict hydrological and climatic events and showed robust
results for flooding scenario predictions, they generally use
complex hydrogeomorphological datasets which require inten-
sive computation and prevent short term forecasts. Data-driven
statistical methods such as autoregressive moving average or
multiple linear regression have also been at the center of
flood modelization. They assimilate climate and hydromete-
orological measures and are generally more computation cost-
efficient compared to physically-based methods. However,
some of these methods have been reported to be unsuitable for
short term forecasts and lacking of accuracy. The previously-
mentioned drawbacks of physically-based and statistical mod-
els are promoting the implementation of advanced machine
learning (ML) techniques to forecast hydrometeorological
events. ML methods have several advantages compared to
them, the most important being that ML can ‘“numerically
formulate the flood nonlinearity, solely based on historical data
without requiring knowledge about the underlying physical
processes.” [11]. Additionally, Tayfur et al. (2018) study
on flood hydrograph predictions showed that ML methods
make good predictions using less data and can therefore be
adopted in poorly gauged measurement stations, often present
in developing countries [13]]. Deep learning methods can even
use images and videos to predict water movements. Isikdogan,
Bovik & Passalacqua (2017) proposed a convolutional neural
network model learning characteristics of water surface. Using
satellite images as inputs, the final trained model is able to
separate water from any kind of other visible elements such
as snow, clouds, land and ice [[14].

E. Conclusion

Sea level has raised significantly in the past decade and
is expected to rise in accelerated pace in the future. Heavy
flooding and rainfall activities are amongst the most important
impacts of SLR. If added to that sea levels keep increasing at
an accelerated rate, flooded areas might even be larger than
expected, putting tens of millions of people at risk. As floods
are considered amongst the costliest natural disasters, it is
necessary to find a reliable and accurate mapping of flood-
risk areas predicting water movements of any kind of water
surface such as oceans, rivers or lakes. Several tools exist:
physically-based and statistical methods and machine learning
methods. The first two show notable drawbacks that ML mod-
els counteract. Hence machine learning and more especially
deep learning methods seem to be the most appropriate ones
in order to forecast water movements of different kinds.

III. METHODOLOGY - LONG SHORT TERM MEMORY

A. Definition and Use

Long short-term memory (LSTM) is a type of recurrent
neural networks (RNN) architecture initiated by the German
researchers Juergen Schmidhuber and Sepp Hochreiter in
the mid-90s [15]. LSTM networks can process any kind of
data points such as images, speech, video or text data and
is therefore used in various fields. In 2002, the first blues
melodies are created using LSTM. The network successfully
learnt a type of blues music and composed a proper musical
structure of this style [16]. Aside from musical composition,
this type of neural network is also well-suited for time-series
prediction, handwriting recognition or even code generation.
Nowadays major technology companies such as Apple, Google
or Amazon are putting LSTM neural networks at the center
of their products. For instance, Google recently created the
Google’s Neural Machine Translation system consisting of a
deep LSTM network and is now using this technology for
speech recognition for its smart assistant Allo and Google
Translate [17].

B. Why LSTM instead of traditional RNN?

The reason of the enthusiasm around LSTM is its ability to
predict anything while dealing with the problems encountered
in vanilla RNN - i.e. vanishing and exploding gradient [18]].
In such problems, the gradient of the loss function approaches
to zero - for vanishing gradient - or tends to infinity - for
exploding gradient -, preventing the weight adjustment and
making the network hard to train. As LSTM remembers
information over a long period of time and assigns their
importance through weights, gradient descent-based problems
are avoided. Just as humans, LSTM networks do not start
their thinking every second and connect previous information
to current tasks. For instance, if one is trying to predict the
last word in the sentence “machine learning is super cool”,
one does not need additional context as it is obvious that the
coming word will be “cool”. Most RNN can predict using past
information but in some cases they might need more context
- i.e. more sentences or words. In theory, it would enable
them to learn more information but in practice it might not
work. In those cases, LSTM become the leading choice. For
these reasons, using LSTM neural networks seemed to be the
appropriate method to predict Lake Geneva water elevation.

C. Framework

The structure of LSTM networks has the same base as
any RNN, which are “dynamical systems with temporal state
representations” [20], meaning that they consists of loops
allowing information to persist in the system (see Figure [3).



Fig. 3. Structure of a Recurrent Neural Network

Source: Fluss Creative Team

As mentioned above, the difference between LSTM and
RNN comes from long-term dependencies, handled in LSTM
but not in RNN - in practice. This difference is embodied
in the structure of the LSTM itself. Indeed, RNN generally
have a very simple structure of one tanh layer, whereas LSTM
networks’ structure is much more complex (see Figure [).

Fig. 4. Structures of a LSTM (left) and a traditional RNN (right)
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LSTM are composed of a repeating module, which is itself
composed of a cell - acting as the memory card of the module
- and of three gates: the forget gate f;, the input gate i; and
the output gate o; [18]]. Walking through the network, the first
step is to decide which information are going to be thrown
away from the cell. It is done by the sigmoid forget gate layer
applied on the output of the previous module h;_; and the
input z; (see Equation 2]and Figure[5). Composed of two parts,
the second step determines which information are going to be
stored in the cell. First, the sigmoid input gate layer decides
which values are going to be updated (see Equationg and
Figure E[) Secondly, a tanh layer creates new values C; that
could be added to the cell (see Equation ). The combination
of the two layers updates the cell’s information. The new cell
state becomes C; (see Equation [T] and and Figure [7).

Ci=fi-Ciq+ir- Cy (D

With f; the sigmoid forget layer, C';— the cell state at t —1,
i¢ the input gate layer and C; the the new values that could
be added to the cell state. These are defined as followed.

Fig. 5. Step 1: Forget gate
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Fig. 6. Step 2: Input gate
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fi=0(W; - [hi—1,x¢] + by) )
iy = o(W; - [he—1, 2] + b;) 3)
Cy = tanh(Wy, - [hy—1, ] + be) (4)

With W), the weights applied to the inputs h;_; and z; in
the associated activation function and by, the bias used compute
element k& with k = {f,i,C}

Fig. 7. Step 3: Cell State update
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Finally, the module delivers the output h; based on the
sigmoid output layer o; and the new cell state information



C; put through a tanh activation function (see Equation [f] and
Figure [3).
[Pt—1, 7] + o) (5)

]’Lt = 0¢ " tanh(Ct) (6)

o =a(W,

Fig. 8. Step 4: Output gate
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In this study, the network used is composed of 2 LSTM
layers and a linear Dense layer (see Figure [9). This last linear
layer permits to obtain an output of size 1 - i.e. the water
elevation y.

D. Parameter choice

The choice of parameters is a substantial component of
neural networks modelization. The goal is to establish a
prediction at ¢ + n of water elevation given k data available
at time t. Therefore, a sensitivity analysis will be conducted
in Section and will be based on a certain delay n and a
sliding window of size k. However it is necessary to fix certain
parameters such as the optimizer and the learning rate LR, the
number of hidden layers of the model H L, the number of units
of each hidden layer u, the number of epochs e and the batch
size BS.

In neural networks, the learning rate is a decisive parameter
used in gradient descents. It represents the step size and
controls how slowly or quickly a neural network (NN) trains.
In the proposed model, Adam optimizer has been selected as it
showed huge speed performance and smaller losses compared
to traditional optimizers such as AdaDelta or stochastic gradi-
ent descent (SGD) [22]. To this optimizer has been arbitrary
associated the learning rate of 0.001 - which is also the default
value in TensorFlow Keras [23]].

In artificial neural networks, hidden layers are layers be-
tween the input and the output layers. For a single-layer
network, the neuron takes in a set of weighted input and
generate an output through a specified activation function. For
the proposed model, a 2-layer LSTM network has been chosen.
This structure showed more precise results than single-layer
LSTM and, as the complexity of the dataset is fairly low, it
did not seem necessary to add more layers.

Fig. 9. LSTM network
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As shown on Figure O] each layer is composed of an
identical module repeated several times. Here the number
of units u refers to the number of times it is repeated.
Once the entire dataset has been through the network, it has
completed one epoch. When setting the number of epochs e,
one sets how many time the network should be trained with
the data. Going through the network, the dataset can also be
splitted in batches of the same size BS. This last parameter
will define the number of samples to work through before
updating the internal parameters of the model. In this study,
the number of units per layer, the number of epochs and the
batch size have been determine using hyperparameter tuning.
To determine the optimal value of each parameter, a first range
of values has been established such that u = {16, 32,64},
e ={1,10,20,30,100} and BS = {16,32,64}. The unit and
batch size ranges have be chosen following a binary system of
base 2 whereas the epoch range has arbitrary been defined after
different tries [23]]. The model has then been trained according
to each possible set of parameters and the learning rate and
number of hidden layers specified above. For each scenario,
the model has finally been tested given a delay of n = 7 and a
sliding window of k = 30 and the associated root mean square
error (RMSE) has been computed.

Fig. 10. Root Mean Square Errors depending on different parameters’ values
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At first, the parameters chosen were the ones of the model
with the lowest RMSE and were as followed: u = 16, e = 30
and BS = 64. However when plotting RMSE:s to the different



Fig. 11. Mean Square Error of the different scenarios
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values of each parameter the batch size trend seemed to be dif-
ferent, showing a flatter RMSE distribution for B.S = 64 com-
pared to the other values BS = {16, 32} (see Figure [10) [23].
To verify the result obtained, the mean of the RMSE for each
parameter value has been calculated. When minimizing this
mean for each parameter, the following optimal set is obtained:
u = 16, e = 30 and BS = 32, better matching expectations
(see Excel file hyperparameter_tuning.x1lsx)[23]. To
validate the most accurate option, both resulting models have
been applied to the full-dataset training and testing sets of size
70% and 30% respectively. For the first model the training and
testing sets were showing RMSEs of 0.040818 and 0.035040
respectively whereas they were showing RMSEs of 0.039444
and 0.033745 for the second (see Figure[TT). Consequently, the
chosen parameters were the one of the second model: u© = 16,
e =30 and BS = 32.

IV. DATASET DESCRIPTION
A. Lake Geneva

Lake Geneva has been chosen as the first study of water
surface because it gathers several advantages: proximity and
data accessibility. Indeed, as University of Lausanne students,
it is much easier to consult one-site experts of Lake Geneva
if needed. Data extraction has been facilitate by the Swiss
Federal Office for the Environment (FOEN) which promptly
provided the data.

Geography: Lake Geneva or Lac Léman in French is a
glacial lake situated between Switzerland and France at the
North of the Alps. Considered as one of the largest lakes in
Europe, Lake Geneva covers an area of 7975 squared meters,
has a maximal length of 75 kilometers and a maximal width of
14 kilometers. It also have an average depth of 154 meters and
a maximum depth of 310 meters (see Figure [I2)) [23]. Lake
Geneva has several affluents coming from different rivers in
France and Switzerland, the most important being the Rhone
River which takes its source in the Rhone Glacier.

Climate: During the year, the daily average of water temper-
atures of the lake vary between 1.5°C in January and 20.2°C
in July [26]]. Started in 1957, Lake Geneva water temperature
tracking revealed an increase in deep water and average surface
water temperatures. Supposedly due to climate change, these
increases amount to +1.1°C between 1963 and 2016 for deep
water and to +2°C between 1970 and 2016 for surface water,
having impacts on the lake ecosystems [27].

Fig. 12. Bathymetric Map of Lake Geneva
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B. Measurements

The Federal Office for the Environment: The Swiss Federal
Office for the Environment (FOEN) ensures the sustainable
use of natural resources such as soil, water, air, quietness and
forests in Switzerland. Thanks to their 349 stations spreaded
across the country, the FOEN can record temperatures, water
elevations and other hydrologic metrics [28]. Lake Geneva
has 2 stations, one in St-Prex and one in Geneva - where



the data used come from. Additionally to the metrics, the
FOEN has also established danger levels scaling from 1 to
5 corresponding for Lake Geneva to levels lower than 372.4
meters to more than 372.95 meters (see Figure [T3).

Water measurement methods: In Switzerland, water levels
are established through periodical measurements realized in
permanent measuring stations. To do so, both non-recording
and recording instruments can be applied. As of today, the
trend goes toward electronic data recording and two main
methods are used by the FOEN: radar systems and gauges with
floats [29]. Non-interventional radar systems determine water
levels without making direct contact with water and therefore
are insensitive to branches and other rubbles. Gauges with
floats measure the water elevation based on the displacement
of the floats. For example, if the water level drops, the float
will fall and the tape - connecting the float and the recording
instrument - will be pulled by the weight of the float and send
a signal to the instrument. Although they are fairly expensive
to install and maintain, and must be protected from the tree
branches, bed load and other rubbles, gauge with floats is the
most widely used method.

Fig. 13. Time series of water elevation of Lake Geneva from 1886 to 2019
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C. Data

The dataset used in this project is a time serie of water ele-
vation measurements of Lake Geneva. The data are expressed
in meter with millimetric precision ranging from January 2
1886 to April 1 2019, which corresponds to 133 years of
daily data and 48’666 observations. The data were kindly
delivered on request by the FOEN in the form of .asc files
containing daily average of elevation measurements. The files
were then converted to .csv to ensure easy reading by the
Python libraries.

Descriptive Statistics: Over the last 133 years, the average
level of Lake Geneva was of 372.06 meters and this value
has not significantly changed over the last 10 years. However,
it appears that the variance was relatively higher before 1980
with a standard deviation of 0.30 meters versus 0.21 meters af-
ter 1980. The most likely explanation for this result is that the
measurement tools have been updated at this time, allowing for
more precise measurements. A first autocorrelation verification
shows that the data are autocorrelated, which is expected for
a process as periodic as water elevation.

V. IMPLEMENTATION

A. Importation and cleaning

The first step is to import the data and split them in two
different files. The first file called elevation_PRES.csv
contains the training and testing sets’ data that will be use for
the training. The second one called elevation_FUT.csv
contains the out-of-sample data that will be use in Section [V1}
Then the data need to be formatted to be usable on Python. The
formatting includes to (1) drop the first column corresponding
to the postal code of the measurement station (2) reformat the
dates and (3) setting them as index column.

B. Normalization

The dataset is normalized in order to ease the use of
sigmoid function and for the sake of comparison. This step
transforms the features by scaling each value to a range
between the dataset minima and maxima. The transformation
is an alternative to zero mean and unit variance scaling.

C. Splitting

The data are splitted in two different sets: training set and
testing set. The respective proportions are 70% and 30%. The
70/30 rule is commonly used for training and testing models.

D. Creation of sliding window matrix

The function create_dataset () is then call to cre-
ate a matrix of shifted inputs and corresponding vector of
observations for a given sliding window and forecast delay.
For instance, a sliding window of 3 means that the model
studies 3 observations preceding the value to predict. Then the
prediction delay define how far in time the prediction should
be. If the delay is 2, it means that the model will studies the
observations at g, t; and o in order to predict the value in
ty.



E. Model setting and compilation

Once the data are ready, the model is defined - here as
sequential. It is composed of two LSTM layers of n units and
a dense layer, which will generate the final outputs. Secondly,
the model is compiled with the mean squared error as loss
function and the Adam optimizer. Finally the model is fitted
with the training set and testing set - here also defined as the
validation dataset. The number of epochs and the batch size
are defined at this point. Then the mean root square error of the
training predictions and of testing predictions are computed.

F. Presentation of the results
VI. RESULTS

The goal of this study is to assess lakes water behaviours
taking into account different time horizons. Initialized with the
hyperparameters defined in Section the model generates
divergent results depending on the time horizon that is consid-
ered. The long-term forecast seems to be more accurate than
the short-term and medium-term forecasts. Note that the results
observed come from an out-of-sample dataset containing one
year of data from April 1 2018 to April 1 2019. The model
has been trained and tested on data from January 1 1886 to
March 31 2018, with a 70/30 split. Additionally to the LSTM
model, a Naive model has been implemented for the sake of
comparison. In this last model, the prediction of Lake Geneva
water elevation in n days should be the water elevation of
today. If the LSTM model shows better accuracy than this
very simplistic model it means that it has a higher power of
prediction.

Fig. 14. Short-term forecast with k = 7 and n = 3 on one-year data
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A. Short-term forecast

Short-term forecasts represent predictions using a sliding
window of one week - i.e. 7 days - and a delay of 3 days.

Figure[T4]shows the resulting forecast as well as the associated
model loss over the training and testing sets, and the RMSE
of the LSTM model and the Naive model for the given
hyperparameters. Even if the loss graph converges, it seems
that the Naive model has a higher prediction power than
the LSTM model, with a RMSE of 0.038123 and 0.044655
respectively.

Fig. 15. Medium-term forecast with £ = 30 and n = 7 on one-year data
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B. Medium-term forecast

With a sliding window of one month - ie. 30 days -
and a delay of 7 days, the medium-term forecast shows
more encouraging results (see Figure [I3). As before, the
loss function converges for both the training and testing sets.
However, the RMSE of the LSTM model is slightly lower
than the one of the Naive model, with a value of 0.058444
and 0.058610 respectively. This difference is of order 10~*
meter which is particularly low. This fairly low result might
be surprising as the hyperparameter tuning has been conducted
with similar sliding window and delay values.

C. Long-term forecast

Long-term forecasts are using a sliding window of three
months - i.e. 90 days - and a delay of 30 days. Figure[I6]shows
the convergence of the loss function for the training and the
testing sets and very interesting results regarding the RMSE
of the LSTM and Naive models. Indeed, LSTM presents a
RMSE value of 0.089209 whereas the Naive model shows a
RMSE of 0.103669 - a -13.95% difference - meaning that
the LSTM model has a higher prediction power for water
elevations. To verify this results, a similar model has been
implemented, changing only the size of the out-of-sample
dataset and consequently the size of the training and testing
sets - always keeping a 70/30 split. The forecast now carried
out on 10 years data from April 1 2009 to April 1 2019 has



Fig. 16. Long-term forecast with £ = 90 and n = 30 on one-year data
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even more striking properties. As before, the LSTM model
has a lower RMSE of 0.131506 compared to the Naive model
which has a 0.162442 RMSE value, representing a -19.04%
difference. However, the model seems to underestimate flash
water rise. Over the last 10 years, the model did not predict
correctly important peaks of water level that crossed the danger
level 2 (see Figure [I7). Although this LSTM should not be
recommended for sudden water rise, its applications in long
term prediction should be further explored.

Fig. 17. Long-term forecast with kK = 90 and n = 30 on ten-years data
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VII. CONCLUSION

Every year climate change seriously impacts an estimated
325 million people worldwide [[1]. One important risk induced
by climate change is rising sea levels, which in turn impacts
flooding and rainfall activities. As flooding risks are expected
to rise dramatically in the next decades and more especially

in the United States, Central Europe and North East and West
Africa [5], there is a serious need for a predictive flooding
model that could be adapted to any water surface. Using
LSTM neural networks, it has been possible to predict Lake
Geneva water behaviors for long-term horizons with better
accuracy than Naive model. However, the model seems to
underestimate flash water rise. Additionally short-term and
medium-term LSTM models do not seem to have a substantial
predictive power when compared to Naive models. Hence,
LSTM applications in long term prediction should be further
explored using for instance satellite images. Adding another
dimension - e.g. the water surface - could provide more
insights on lakes water behaviours. An additional element
that could be explored is the choice of parameters for long-
term models. In this paper, the hyperparameter tuning has
been implemented on a medium-term framework. With new
hyperparameters, one could expect better performance of long-
term LSTM models.
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