
Data Science and Advanced Programming — Lecture 9
Unsupervised Machine Learning

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

November 10th, 2025 | 12:30 - 16:00 | Internef 263

1 / 120

Today’s Roadmap

1. k-Means
2. Evaluating Clusterings (read at home - here for completeness)
3. Gaussian Mixture Models
4. Principle Component Analysis (PCA)
5. Expectation Maximization (read at home - here for completeness)
6. Hierarchical Clustering
7. Density-based Clustering (cont’d)

1 / 120

Learning Parameters of Probability Distributions

▶ In many settings not all variables are observed (labeled) in the training data
xi = (xi,hi)

▶ e.g. Speech recognition: have speech signals, but not phoneme labels.
▶ e.g. object recognition: have object labels (car, bike), but not part labels

(wheel, door, seat).
▶ Unobserved variables are called LATENT VARIABLES.

2 / 120

Recall — Unsupervised Learning

Learning “what normally happens”.
▶ No output.
▶ Clustering: Grouping similar instances.
▶ Example applications:

▶ Customer segmentation.
▶ Image compression: Color

quantization.
▶ Bioinformatics: Learning motifs.

3 / 120

Motivation — Clustering

▶ Clustering, as a kind of unsupervised learning, aims at grouping data points into
clusters.

▶ Intuition: Data points within
▶ the same cluster should be close to each other
▶ different clusters should be far apart from each other

▶ Applications:
▶ segmentation of customers (e.g., for marketing campaigns)
▶ organization/exploration of data (e.g., search results)
▶ detection of outliers data points

4 / 120

Clustering: Basic idea

▶ Basic idea: group together similar instances
▶ Example: 2D point patterns

5 / 120

Clustering: Basic idea

▶ Basic idea: group together similar instances
▶ Example: 2D point patterns

6 / 120

Clustering: Basic idea
▶ Basic idea: group together similar instances
▶ Example: 2D point patterns

▶ What could similar mean?
▶ One option: small Euclidean distance (squared)

dist(⃗x, y⃗) = ∥⃗x − y⃗∥2
2

▶ Clustering results are crucially dependent on the measure of similarity (or
distance) between “points” to be clustered

7 / 120

Clustering: Basic idea in color

8 / 120

Clustering Algorithms

▶ Partition algorithms (Flat)
▶ K-Means
▶ Mixture of Gaussians
▶ . . .

▶ Hierarchical algorithms
▶ Bottom-up - agglomerative
▶ Top down - divisive

9 / 120

First (?) Application of Clustering

▶ John Snow, a London physician plotted the location of cholera
deaths on a map during an outbreak in the 1850s.

▶ The locations indicated that cases were clustered around
certain intersections where there were polluted wells —
thus exposing both the problem and the solution.

10 / 120

Clustering Example: Astronomy
SkyCat (http://www.eso.org/sci/observing/tools/skycat.html): Clustered
2 × 109 sky objects into stars, galaxies, quasars, etc. based on radiation emitted in
different spectrum bands

11 / 120

http://www.eso.org/sci/observing/tools/skycat.html

Another Clustering Example: Genetics

Eisen et al, PNAS 1998

12 / 120

1. k-Means – Unsupervised ML
Bishop, Chapter 9

▶ We will start with an unsupervised learning (clustering) problem:
▶ Given a dataset {x1, . . . , xN} each xi ∈ RD partition the dataset into K clusters

(e.g. healthy / sick patients).
▶ Intuitively, a cluster is a group of points, which are close together and far from

others.

13 / 120

Distortion Measure
▶ Formally, introduce prototypes (or

cluster centers) µk ∈ RD

▶ Use binary rnk, 1 if point n is in cluster
k, 0 otherwise (1-of- K coding scheme
again)

▶ Find {µk} , {rnk} to minimize
distortion measure:

J =
N∑

n=1

K∑
k=1

rnk ∥xn − µk∥2

e.g. two clusters k = 1, 2 :

J =
∑

xn∈C1

∥xn − µ1∥2+
∑

xn∈C2

∥xn − µ2∥2

14 / 120

Minimizing Distortion Measure

▶ Minimizing J directly is hard

J =
N∑

n=1

K∑
k=1

rnk ∥xn − µk∥2

▶ However, two things are easy
▶ If we know µk, minimizing J wrt rnk
▶ If we know rnk, minimizing J wrt µk

▶ This suggests an iterative procedure
▶ Start with initial guess for µk
▶ Iteration of two steps:

▶ Minimize J wrt rnk
▶ Minimize J wrt µk

▶ Rinse and repeat until convergence

15 / 120

Determining Membership Variables

▶ Step 1 in an iteration of K-means is to
minimize distortion measure J wrt. cluster
membership variables rnk

J =
N∑

n=1

K∑
k=1

rnk ∥xn − µk∥2

▶ Terms for different data points xn are
independent, for each data point set rnk to
minimize

K∑
k=1

rnk ∥xn − µk∥2

▶ Simply set rnk = 1 for the cluster center µk
with smallest distance.

16 / 120

Determining Cluster Centers

▶ Step 2: fix rnk, minimize J wrt the cluster centers µk

J =
K∑

k=1

N∑
n=1

rnk ∥xn − µk∥2 switch order of sums

▶ So we can minimize wrt each µk separately
▶ Take derivative, set to zero:

2
∑N

n=1 rnk (xn − µk) = 0
⇔ µk =

∑
n rnkxn∑

n rnk

i.e. mean of datapoints xn assigned to cluster k (→ “k-Means”)

17 / 120

k-Means Algorithm

▶ Start with an initial guess for µk
▶ Iteration of two steps:

1. Minimize J wrt rnk

▶ Assign points to nearest cluster center
2. Minimize J wrt µk

▶ Set cluster center as average of points in cluster
▶ Rinse and repeat until convergence

18 / 120

Old Faithful Dataset
https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat

19 / 120

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat

k-means example

20 / 120

k-means example

21 / 120

k-means example

22 / 120

k-means example

23 / 120

k-means example

24 / 120

k-means example

25 / 120

k-means example

26 / 120

k-means example

27 / 120

k-means example

Next step doesn’t change membership — stop

28 / 120

Cost function J

29 / 120

k-means Convergence

▶ Repeat steps until no change in cluster assignments.
▶ For each step, value of J either goes down, or we stop.
▶ Finite number of possible assignments of data points to clusters, so we are

guaranteed to converge eventually.
▶ Note it may be a local maximum rather than a global maximum to which we

converge.

30 / 120

Clustering Cars based on Power and Weight
demo/k_means_car.py

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')
extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values
extract origin as target value y
y = cars.iloc[:, 7].values
normalize data
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X) # determine min and max
X_normalized = min_max_scaler.transform(X)
apply k-Means
km = KMeans(n_clusters=3, random_state=0).fit(X_normalized)
plot cars
U.S. : o / Europe: x / Japan : +
m = ['o' if o==1 else 'x' if o==2 else '+' for o in y]
Cluster 1 : red / Cluster 2 : blue / Cluster 3 : green
c = ['red' if l==0 else 'blue' if l==1 else 'green' for l in km.labels_]
for i in range(0,len(X)):

plt.scatter(X[i,0], X[i,1], color=c[i], marker=m[i])
plt.xlabel('Power [hp]')
plt.ylabel('Weight [lb]')
plt.show()

31 / 120

Clustering Cars based on Power and Weight: Plot

32 / 120

2. Evaluating Clustering: Some Notation

Read at home — here for completeness
▶ Consider a set of data points D = {x1, . . . , xn} xi ∈ Rm

▶ Objective: Determine clustering (also: grouping, partitioning)

C = {C1, . . . ,Ck} with Ci ⊆ D

such that
▶ clusters are disjoint ∀i ̸= j : Ci ∩ Cj = ∅
▶ each data point is assigned to a cluster⋃

Ci∈C

Ci = D

33 / 120

Evaluating Clustering

▶ How can we evaluate the quality of a clustering computed?
▶ External measures assume that ideal clustering is known (e.g., class labels

assigned to data points)

I =
{

I1, . . . , I|I|
}

with Ii ⊆ D

▶ Internal measures assume no knowledge of ideal clustering (i.e., we only know
the data points and the clustering)

34 / 120

Purity

▶ Purity of a cluster is the fraction of data points therein that belongs to the
dominant cluster from the ideal clustering

purity (Ci) =
1
|Ci|

max
Ij∈I

|Ci ∩ Ij|

▶ Purity of a clustering is then the weighted average of the purity values of its
clusters

purity(C) =
∑
Ci∈C

|Ci|
n purity (Ci)

35 / 120

Purity

C1 C2 C3

purity(C1) =
2
3 purity(C2) =

2
4 purity(C3) =

1
2

purity(C) = 3
9 · 2

3 + 4
9 · 2

4 + 2
9 · 1

2 ≈ 0.56

36 / 120

BetaCV

▶ BetaCV, as an internal measure, considers the ratio of average distances between
pairs of points within the same or different clusters

BetaCV(C) = Win /Nin
Wout /Nout

▶ with Nin and Nout as pairs of data points within the same or within different
clusters

Nin =
1
2
∑
Ci∈C

|Ci| (|Ci| − 1) Nout =
1
2

∑
Ci,Cj∈C,Ci ̸=Cj

|Ci| |Cj|

37 / 120

BetaCV

▶ BetaCV, as an internal measure, considers the ratio of average distances between
pairs of points within the same or different clusters

BetaCV(C) = Win /Nin
Wout /Nout

▶ and Win and Wout as the total distance of pairs of data points within the same
or within different clusters

Win =
1
2
∑
Ci∈C

∑
x,y∈Ci

d(x, y) Wout =
1
2
∑

Ci,Cj∈C

∑
x∈Ci

∑
y∈Cj

d(x, y)

38 / 120

Dunn Index

▶ Dunn Index, as another internal measure, compares the minimal distance
between any pair of data points from different clusters against the maximal
distance between any pair of data points from the same cluster.

DunnIndex(C) =
min

x∈Ci,y∈Cj,Ci ̸=Cj
d(x, y)

max
x∈Ci,y∈Ci

d(x, y)

39 / 120

3. Gaussian Mixture Models
See Bishop (2006), Chapter 9; Murphy (2012), Chapter 11

40 / 120

Hard Assignment versus Soft Assignment

▶ In the K-means algorithm, a hard assignment
of points to clusters is made.

▶ However, for points near the decision boundary,
this may not be such a good idea.

▶ Instead, we could think about making a soft
assignment of points to clusters.

41 / 120

Gaussian Mixture Models

▶ The Gaussian mixture model (or Mixture of Gaussians MoG) models the data
as a combination of Gaussians.

▶ Above shows a dataset generated by drawing samples from three different
Gaussians.

p(x) =
K∑

k=1
πkN (x | µk,Σk) . p (zk = 1) = πk

42 / 120

A Generative Model

▶ The mixture of Gaussians is a generative model.
▶ To generate a data point xn, we first generate a value for a - discrete variable

zn ∈ {1, . . . ,K}
▶ We then generate a value xn ∼ N (x | µk,Σk) for the corresponding Gaussian

43 / 120

A Graphical Model

▶ Note zn is a latent variable, unobserved.
▶ Need to give conditional distributions p (zn) and p (xn | zn)

▶ The one-of-K representation is helpful here: znK ∈ {0, 1}, zn = (zn1, . . . , znK)

44 / 120

Graphical Model — Latent Component Variable

▶ Use a Bernoulli distribution for p (zn)
▶ i.e. p (znk = 1) = πk
▶ Parameters to this distribution {πK}

▶ Must have 0 ≤ πk ≤ 1 and
∑K

k=1 πk = 1
▶ p (zn) =

∏K
k=1 π

znk
k

45 / 120

Graphical Model – Observed Variable

▶ Use a Gaussian distribution for p (xn | zn)

▶ Parameters to this distribution {µk,Σk}

p (xn | znk = 1) = N (xn | µk,Σk)

p (xn | zn) =
K∏

k=1
N (xn | µk,Σk)

znk

46 / 120

A Graphical Model – Joint Distribution

▶ The full joint distribution is given by:

p(x, z) =
N∏

n=1
p (zn) p (xn | zn)

=
N∏

n=1

K∏
k=1

πznk
k N (xn | µk,Σk)

znk

47 / 120

Marginal over Observed (MoG) Variables

▶ The marginal distribution p (xn) for this model is:

p (xn) =
∑
zn

p (xn, zn) =
∑
zn

p (zn) p (xn | zn)

=
K∑

k=1
πkN (xn | µk,Σk)

▶ A mixture of Gaussians

48 / 120

MoG Conditional over Latent Variable

▶ The conditional p (znk = 1 | xn) will play an important role for learning
▶ It is denoted by γ (znk) can be computed as:

γ (znk) ≡ p (znk = 1 | xn) =
p (znk = 1) p (xn | znk = 1)∑K
j=1 p (znj = 1) p (xn | znj = 1)

=
πkN (xn | µk,Σk)∑K
j=1 πjN (xn | µj,Σj)

▶ γ(znk) is the responsibility of component k for datapoint n

49 / 120

MoG Learning

▶ Given a set of observations {x1, . . . , xN}, without the latent
▶ variables zn, how can we learn the parameters?
▶ Model parameters are θ = {πk, µk,Σk}
▶ Answer will be similar to k-means:

▶ If we know the latent variables zn, fitting the Gaussians is easy
▶ If we know the Gaussians µk,Σk, finding the latent variables is easy

▶ Rather than latent variables, we will use responsibilities γ(znk)

50 / 120

MoG Maximum Likelihood Learning

▶ Given a set of observations {x1, . . . , xN}, without the latent variables zn, how can
we learn the parameters?

▶ Model parameters are θ = {πk, µk,Σk}
▶ We can use the maximum likelihood criterion:

θML = argmax
θ

N∏
n=1

K∑
k=1

πkN (xn | µk,Σk)

= argmax
θ

N∑
n=1

log

{ K∑
k=1

πkN (xn | µk,Σk)

}

▶ Unfortunately, closed-form solution not possible this time - log of sum rather than
log of product

51 / 120

MoG Maximum Likelihood Learning - Problem

▶ Maximum likelihood criterion, 1-D:

θML = argmax
θ

N∑
n=1

log

{ K∑
k=1

πk
1√
2πσ

exp
{
− (xn − µk)

2 /
(
2σ2)}

▶ Suppose we set µk = xn for some k and n, then we have one term in the sum:

πk
1√

2πσk
exp

{
− (xn − µk)

2 /
(
2σ2)}

=πk
1√

2πσk
exp

{
−(0)2/

(
2σ2)}

▶ In the limit as σk → 0, this goes to ∞
▶ So ML solution is to set some µk = xn, and σk = 0 !

52 / 120

ML for Mixture of Gaussians

▶ Keeping this problem in mind, we will develop an algorithm for ML estimation of
the parameters for a MoG model

▶ Search for a local optimum.
▶ Consider the log-likelihood function

ℓ(θ) =
N∑

n=1
log

{ K∑
k=1

πkN (xn | µk,Σk)

}

▶ We can try taking derivatives and setting to zero, even though no closed form
solution exists.

53 / 120

Maximizing Log-Likelihood - Means

ℓ(θ) =
N∑

n=1
log

{ K∑
k=1

πkN (xn | µk,Σk)

}
∂

∂µk
ℓ(θ) =

N∑
n=1

πkN (xn | µk,Σk)∑
j πjN (xn | µj,Σj)

Σ−1
k (xn − µk)

=
N∑

n=1
γ (znk)Σ

−1
k (xn − µk)

- Setting derivative to 0 , and multiply by Σk

N∑
n=1

γ (znk)µk =
N∑

n=1
γ (znk) xn

⇔ µk =
1

Nk

N∑
n=1

γ (znk) xn where Nk =
N∑

n=1
γ (znk)

54 / 120

Maximizing Log-Likelihood: Means and Covariances

▶ Note that the mean µk is a weighted combination of points xn, using the
responsibilities y (znk) for the cluster k

µk =
1

Nk

N∑
n=1

γ (znk) xn

▶ Nk =
∑N

n=1 γ (znk) is the effective number of points in the cluster
▶ A similar result comes from taking derivatives wrt. the covariance matrices Σk :

Σk =
1

Nk

N∑
n=1

γ (znk) (xn − µk) (xn − µk)
T

55 / 120

Maximizing Log-Likelihood: Mixing Coefficients

▶ We can also maximize wrt. the mixing coefficients πk
▶ Note there is a constraint that

∑
k πk = 1

▶ Use Lagrange multipliers
▶ End up with: πk = Nk

N average responsibility that component k takes.

56 / 120

Three Parameter Types and Three Equations

▶ These three equations a solution does not make

µk =
1

Nk

N∑
n=1

γ (znk) xn

Σk =
1

Nk

N∑
n=1

γ (znk) (xn − µk) (xn − µk)
T

πk =
Nk
N

▶ All depend on γ(znk), which depends on all 3 !
▶ But an iterative scheme can be used

57 / 120

EM for Mixtures of Gaussians
▶ Initialize parameters, then iterate:

▶ E step: Calculate responsibilities using current parameters

γ (znk) =
πkN (xn | µk,Σk)∑K
j=1 πjN (xn | µj,Σj)

▶ M step: Re-estimate parameters using these y (znk)

µk =
1

Nk

N∑
n=1

γ (znk) xn

Σk =
1

Nk

N∑
n=1

γ (znk) (xn − µk) (xn − µk)
T

πk =
Nk
N

▶ This algorithm is known as the expectation-maximization algorithm (EM)
▶ Next we describe its general form, why it works, and why it’s called EM (but first an

example)
58 / 120

The Likelihood

▶ The form of the Gaussian mixture distribution is governed by the parameters π,µ
and Σ, where we have used the notation
π ≡ {π1, . . . , πk} ,µ ≡ {µ1, . . . , µk} ,Σ ≡ {Σ1, . . .Σk}.

▶ One way to set the values of these parameters is to use maximum likelihood.
▶ The log of the likelihood function is given by

ln p(X | π,µ,Σ) =
N∑

n=1
ln

{ K∑
k=1

πkN (xn | µk,Σk)

}

where X = {x1, . . . , xN}.

59 / 120

Problems with optimizing the likelihood

▶ The situation is now much more complex than with a single Gaussian, due to the
presence of the summation over k inside the logarithm.

▶ As a result,the maximum likelihood solution for the parameters no longer has a
closed-form analytical solution.

▶ One approach to maximizing the likelihood function is to use iterative numerical
optimization techniques.

▶ Gradient methods could be used but are painful to implement. =⇒ Non-convex
optimization problem! (multiple optima possible)

60 / 120

Example in one dimension

▶ Observations x1 . . . xn
▶ K = 2 Gaussians with unknown µ, σ2

▶ Estimation trivial if we know the
source of each observation

µb =
x1+x2+...+xnb

nb

σ2
b = (x1−µ1)

2+...+(xn−µn)
2

nb

61 / 120

Example in one dimension

▶ Observations x1 . . . xn
▶ K = 2 Gaussians with unknown µ, σ2

▶ Estimation trivial if we know the
source of each observation

µb =
x1+x2+...+xnb

nb

σ2
b = (x1−µ1)

2+...+(xn−µn)
2

nb

62 / 120

Example: Expectation Maximization in 1d (II)

▶ What if we don’t know the source?
▶ If we knew parameters of the

Gaussians
(
µ, σ2)

63 / 120

Example: Expectation Maximization in 1d (II)

▶ What if we don’t know the source?
▶ If we knew parameters of the

Gaussians
(
µ, σ2)

→ can guess whether point is more likely
to be a or b.

P (b | xi) =
P (xi | b)P(b)

P (xi | b)P(b) + P (xi | a)P(a)

P (xi | b) = 1√
2πσ2

b

exp

(
−(xi − µb)

2

2σ2
b

)

64 / 120

EM Algorithm (in 1d)

A fundamental problem:
▶ we need

(
µa, σ2

a
)

and
(
µb, σ2

b
)

to guess the source of the points.
▶ we need to know the source to estimate

(
µa, σ2

a
)

and
(
µb, σ2

b
)
.

EM algorithm:
1. Start with two randomly placed Gaussians

(
µa, σa2) and

(
µb, σb2).

2. E(xpectation) step:
▶ for each point: P (b | xi) = does it look like it came from b ?

3. M(aximization)-step:
▶ adjust

(
µa, σ2

a
)

and
(
µb, σ2

b
)

to fit points assigned to them.
4. Iterate until convergence.

65 / 120

EM in 1d

P (xi | b) = 1√
2πσ2

b

exp

(
−
(xi − µb)

2

2σ2
b

)

bi = P (b | xi) =
P (xi | b)P(b)

P (xi | b)P(b) + P (xi | a)P(a)
ai = P (a | xi) = 1 − bi

µb =
b1x1 + b2x2 + . . .+ bnxnh

b1 + b2 + . . .+ bn

σ2
b =

b1 (x1 − µ1)
2 + . . .+ bn (xn − µn)

2

b1 + b2 + . . .+ bn

µa =
a1x1 + a2x2 + . . .+ anxnn

a1 + a2 + . . .+ an

σ2
a =

a1 (x1 − µ1)
2 + . . .+ an (xn − µn)

2

a1 + a2 + . . .+ an

→ We could also estimate priors:

P(b) = (b1 + b2 + . . . bn) /n
P(a) = 1 − P(b)

66 / 120

EM in the multidimensional case

▶ Start with parameters describing each cluster
▶ Mean µc, Covariance Σc, ”size” πc
▶ E-step (”Expectation”):

▶ For each observation/point xi
▶ Compute “ric”, the probability that it belongs to cluster

c.
▶ Compute its probability under model c.
▶ Normalize to sum to one (over clusters c).

ric =
πcN (xi;µc,Σc)∑

c′ πc′N (xi;µc′ ,Σc′)

▶ If xi is very likely under the c-th Gaussian, it gets high
weight.

▶ Denominator just makes r’s sum to one.

67 / 120

EM in the multidimensional case

▶ M-step (”Maximization step”):
▶ For each cluster (Gaussian) z = c
▶ Update its parameters using the (weighted) data points

Nc =
∑

i
ric Total responsibility allocated to cluster c

πc =
Nc
N Fraction of total assigned to cluster c

µc =
1

Nc

∑
i

ricxi︸ ︷︷ ︸
Weighted mean of assigned data

Σc =
1

Nc

∑
i

ric (xi − µc)
T (xi − µc)︸ ︷︷ ︸

weighted covariance of assigned data
(use new weighted means here)

68 / 120

Expectation-Maximization: Summary

▶ Likelihood of the data

P (x1, . . . , xN) = ΠN
i=1

K∑
k=1

P (xi | k)P(k)

▶ Each step increases the log-likelihood of our model

ln p(X | π,µ,Σ) =
N∑

n=1
ln

{ K∑
k=1

πkN (xn | µk,Σk)

}

▶ Iterate until convergence
▶ Convergence guaranteed — another ascent method.

▶ Cannot discover k.

69 / 120

MoG EM — Example

▶ Same initialization as with K-means before
▶ Often, K-means is actually used to initialize EM

70 / 120

MoG EM — Example

Calculate responsibilities γ (znk)

71 / 120

MoG EM — Example

Calculate model parameters {πk,µk,Σk} using these responsibilities

72 / 120

MoG EM — Example

Iteration 2

73 / 120

MoG EM — Example

Iteration 5

74 / 120

MoG EM — Example

Interation 20 — converged

75 / 120

Gaussian mixture models:d>1

See Bishop (2006) for details

76 / 120

Bayesian Information Criterion (BIC)
▶ How to pick k?
▶ Probabilistic model:

L = ln p(X | π, µ,Σ) =
∑N

n=1 ln
{∑K

k=1 πkN (xn | µk,Σk)
}

▶ Tries to “fit” the data (maximize likelihood)
▶ Choose K that makes L as large as possible?

▶ K = n : each data point has its own ”source”
▶ may not work well for new data points

▶ Split points into training set T and validation set V
▶ for each k : fit parameters of T
▶ measure likelihood of V
▶ sometimes still best when k = n

▶ ”Occam’s razor”:
▶ Pick the ”simplest” of all models that fits the data.
▶ Assess, e.g., via Bayes Information Criterion (BIC): maxp{L − 1/2p ∗ log(n)}
▶ L: Likelihood; p: # Parameters in the model - how simple is the model.

77 / 120

Hands-on example
https://scikit-learn.org/stable/modules/mixture.html
demo/GMM_scikit_example.py

▶ Plot the confidence ellipsoids of a mixture of two Gaussians obtained with
Expectation Maximization (GaussianMixture class)

▶ The model has access to 1,3 , and 5 components with which to fit the data. Note
that the Expectation Maximization model will necessarily use ALL components

▶ In the 5-component example, we can see that the Expectation Maximization
model splits some components arbitrarily, because it is trying to fit too many
components.

78 / 120

https://scikit-learn.org/stable/modules/mixture.html

Hands-on example 2

▶ We simulate a bunch of data (e.g., an
ergodic set). — it is in a text file
(ergodic_data.txt - 3 dimensions)

▶ We apply GMM (build_density.py)
▶ We can sample data from the fitted

GMM model (sample.py)

79 / 120

GMM — Cars based on Power and Weight
import itertools
import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl
from sklearn import mixture
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold','darkorange'])

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')
extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values
extract origin as target value y
y = cars.iloc[:, 7].values

normalize data
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X) # determine min and max
X_normalized = min_max_scaler.transform(X)
Fit a Gaussian mixture with EM using five components
gmm = mixture.GaussianMixture(n_components=5, covariance_type='full').fit(X_normalized)
plot_results(X_normalized, gmm.predict(X_normalized), gmm.means_, gmm.covariances_, 0,

'Gaussian Mixture')
plt.show()

80 / 120

Cont.

def plot_results(X, Y_, means, covariances, index, title):
splot = plt.subplot(1, 1, 1 + index)
for i, (mean, covar, color) in enumerate(zip(

means, covariances, color_iter)):
v, w = linalg.eigh(covar)
v = 2. * np.sqrt(2.) * np.sqrt(v)
u = w[0] / linalg.norm(w[0])
as the DP will not use every component it has access to
unless it needs it, we shouldn't plot the redundant
components.
if not np.any(Y_ == i):

continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component
angle = np.arctan(u[1] / u[0])
angle = 180. * angle / np.pi # convert to degrees
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(0.5)
splot.add_artist(ell)

plt.xticks(())
plt.yticks(())
plt.xlabel('Power [hp]')
plt.ylabel('Weight [lb]')
plt.title(title)

81 / 120

GMM — Cars based on Power and Weight

82 / 120

4. Expectation Maximization: A General Version of
EM

▶ In general, we are interested in maximizing the likelihood

p(X | θ) =
∑

Z
p(X,Z | θ)

where X denotes all observed variables, and Z denotes all latent (hidden,
unobserved) variables

▶ Assume that maximizing p(X | θ) is difficult (e.g. mixture of Gaussians)
▶ But maximizing p(X,Z | θ) is tractable (everything observed)

▶ p(X,Z | θ) is referred to as the complete-data likelihood function, which we don’t
have

83 / 120

A Lower Bound

▶ The strategy for optimization will be to introduce a lower bound on the likelihood
▶ This lower bound will be based on the complete-data likelihood, which is easy to

optimize
▶ Iteratively increase this lower bound
▶ Make sure we’re increasing the likelihood while doing so

84 / 120

A Decomposition Trick

▶ To obtain the lower bound, we use a decomposition:

ln p(X,Z | θ) = ln p(X | θ) + ln p(Z | X,θ) product rule
ln p(X | θ) = L(q,θ) + KL(q∥p)

L(q,θ) ≡
∑

Z
q(Z) ln

{
p(X,Z | θ)

q(Z)

}
KL(q∥p) ≡ −

∑
Z

q(Z) ln
{

p(Z | X,θ)

q(Z)

}
▶ KL(q∥l) is known as the Kullback-Leibler divergence (KL-divergence), and is ≥ 0

(next slide) −→ Hence ln p(X | θ) ≥ L(q,θ)
TODO colors

85 / 120

Kullback-Leibler Divergence

▶ KL(p(x)∥q(x)) is a measure of the difference between distributions p(x) and q(x) :

KL(p(x)∥q(x)) = −
∑

x
p(x) log q(x)

p(x)

▶ Motivation: average additional amount of information required to encode x using
code assuming distribution q(x) when x actually comes from p(x)

▶ Note it is not symmetric: KL(q(x)∥p(x)) ̸= KL(p(x)∥q(x)) in general
▶ It is non-negative:

▶ Jensen’s inequality: − ln (
∑

x xp(x)) ≤ −
∑

x p(x) ln x
▶ Apply to KL:

KL(p∥q) = −
∑

x
p(x) log q(x)

p(x) ≥ − ln

(∑
x

q(x)
p(x)p(x)

)
= − ln

∑
x

q(x) = 0

86 / 120

Increasing the Lower Bound — E-step

▶ EM is an iterative optimization technique which tries to maximize this lower
bound: ln p(X | θ) ≥ L(q,θ)

87 / 120

Increasing the Lower Bound — M-step

M step: Fix q, maximize L(q,θ) wrt θ
The maximization problem is on

L(q,θ) =
∑

Z q(Z) ln p(X,Z | θ)−
∑

Z q(Z) ln q(Z)
=
∑

Z p
(
Z | X,θold) ln p(X,Z | θ)−

∑
Z p
(
Z | X,θold) ln p

(
Z | X,θold)

Second term is constant with respect to θ
First term is ln of complete data likelihood, which is assumed easy to optimize
Expected complete log likelihood - what we think complete data likelihood will be

88 / 120

Why does EM work?
▶ In the M-step we changed from θold to θnew

▶ This increased the lower bound L, unless we were at a maximum (so we would
have stopped)

▶ This must have caused the log likelihood to increase
▶ The E-step set q to make the KL-divergence 0:

ln p
(

X | θold
)
= L

(
q,θold

)
+ KL(q∥p) = L

(
q,θold

)
▶ Since the lower bound L increased when we moved from θold to θnew

ln p
(

X | θold
)
= L

(
q,θold

)
< L (q,θnew)

= ln p (X | θnew)− KL (q∥pnew)

▶ So the log-likelihood has increased going from θold to θnew

89 / 120

Bounding Example

Consider 2 component 1-D MoG with known variances.

90 / 120

Bounding Example

True likelihood function
Recall we’re fitting means θ1, θ2

91 / 120

Bounding Peaks

▶ Lower bound the likelihood function using averaging distribution q(Z)
▶ ln p(X | θ) = L(q,θ) + KL(q(Z)∥p(Z | X,θ))
▶ Since q(Z) = p

(
Z | X,θold), bound is tight (equal to actual likelihood) at θ = θold

92 / 120

Bounding Peaks

▶ Lower bound the likelihood function using averaging distribution q(Z)
▶ ln p(X | θ) = L(q,θ) + KL(q(Z)∥p(Z | X,θ))
▶ Since q(Z) = p

(
Z | X,θold), bound is tight (equal to actual likelihood) at θ = θold

93 / 120

Bounding Peaks

▶ Lower bound the likelihood function using averaging distribution q(Z)
▶ ln p(X | θ) = L(q,θ) + KL(q(Z)∥p(Z | X,θ))
▶ Since q(Z) = p

(
Z | X,θold), bound is tight (equal to actual likelihood) at θ = θold

94 / 120

Recall About the EM Algorithm

Some good things about EM:
▶ no learning rate (step-size) parameter.
▶ automatically enforces parameter

constraints.
▶ very fast for low dimensions.
▶ each iteration guaranteed to improve

likelihood.

Some bad things about EM:
▶ can get stuck in local minima.
▶ can be slower than conjugate gradient

(especially near convergence).
▶ requires expensive inference step.
▶ is a maximum likelihood/MAP

(maximum a posterior) method.

95 / 120

EM — Summary

▶ EM finds local maximum to likelihood

p(X | θ) =
∑

Z
p(X,Z | θ)

▶ Iterates two steps:
▶ E step “fills” in the missing variables Z (calculates their distribution)
▶ M step maximizes expected complete log likelihood (expectation wrt E step

distribution)
▶ This works because these two steps are performing a coordinatewise hill-climbing

on a lower bound on the likelihood p(X | θ)

96 / 120

5. Hierarchical Clustering

▶ k-Means determines a flat clustering of data points; there is no relationship
between the clusters

▶ Hierarchical clustering determines a sequence of increasingly fine-grained
clusterings

C1, . . . , Cn

▶ C1 = {D} contains all data points in a single cluster
▶ Cn = {{xi} : xi ∈ D} contains one cluster per data point
▶ Clustering Ci is contained in clustering Ci−1

∀Cj ∈ Ci : ∃Cl ∈ Ci−1 : Cj ⊆ Cl

97 / 120

Dendrogram

Sequence of clusterings can be visualized in a dendrogram

98 / 120

Hierarchical Agglomerative vs. Divisive Clustering

▶ Hierarchical Agglomerative Clustering (HAC)
▶ starts with the most fine-grained clustering Cn
▶ proceeds bottom-up and merges the two closest clusters in Ci to obtain the more

coarse-grained clustering Ci−1
▶ Hierarchical Divisive Clustering (HDC)

▶ starts with the most coarse-grained clustering C1
▶ proceeds top-down and splits one of the clusters in Ci−1 to obtain the more

fine-grained clustering C1

99 / 120

Hierarchical Agglomerative vs. Divisive Clustering

▶ Hierarchical Agglomerative Clustering (HAC)
▶ starts with the most fine-grained clustering Cn
▶ proceeds bottom-up and merges the two closest clusters in Ci to obtain the more

coarse-grained clustering Ci−1

▶ So far, we can only measure distance between data points, but we need a measure
of distance between clusters

100 / 120

Linkage Criteria
Linkage criteria measure distance between
two clusters based on the distance between
data points therein
Single-Link

δ (Ci,Cj) = min {d(x, y) | x ∈ Ci, y ∈ Cj}

Complete-Link

δ (Ci,Cj) = max {d(x, y) | x ∈ Ci, y ∈ Cj}

Average-Link

δ (Ci,Cj) =
1

|Ci| |Cj|
∑
x∈Ci

∑
y∈Cj

d(x, y)

101 / 120

Pseudocode: Hierarchical Agglomerative Clustering

102 / 120

HAC Example

▶ Consider the following data points in R2

x1 = (1, 0)
x2 = (2, 1)
x3 = (8, 0)

x4 = (12, 1)
x5 = (15, 1)

d =


0.00 1.41 7.00 11.05 14.04

0.00 6.08 10.00 13.04
0.00 4.12 7.07

0.00 3.00
0.00


▶ With distance matrix d

103 / 120

HAC with Single-Link Example

HAC with single-link based on distance matrix d

C1 = {{x1, x2, x3, x4, x5}}
C2 = {{x1, x2} , {x3, x4, x5}}
C3 = {{x1, x2} , {x3} , {x4, x5}}
C4 = {{x1, x2} , {x3} , {x4} , {x5}}
C5 = {{x1} , {x2} , {x3} , {x4} , {x5}}

d =


0.00 1.41 7.00 11.05 14.04

0.00 6.08 10.00 13.04
0.00 4.12 7.07

0.00 3.00
0.00



104 / 120

HAC with Single-Link Example

HAC with complete-link based on distance matrix d

C1 = {{x1, x2, x3, x4, x5}}
C2 = {{x1, x2, x3} , {x4, x5}}
C3 = {{x1, x2} , {x3} , {x4, x5}}
C4 = {{x1, x2} , {x3} , {x4} , {x5}}
C5 = {{x1} , {x2} , {x3} , {x4} , {x5}}

d =


0.00 1.41 7.00 11.05 14.04

0.00 6.08 10.00 13.04
0.00 4.12 7.07

0.00 3.00
0.00



105 / 120

Clustering Cars based on Power and Weight
demo/HAC_example.py

import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
import matplotlib.pyplot as plt

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

keep a sample of 50 cars
cars = cars.sample(50, random_state=0)
extract labels
labels = cars.iloc[:,8].values
extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values

normalize data
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X) # determine min and max
X_normalized = min_max_scaler.transform(X)

perform hierarchical agglomerative clustering using complete linkage
clusters = linkage(X_normalized, method='complete', metric='euclidean')

plot dendrogram
dendrogram = dendrogram(clusters, labels=labels)
plt.tight_layout()
plt.ylabel('Euclidean distance')
plt.show()

106 / 120

Clustering Cars based on Power and Weight

107 / 120

6. Density-based Clustering

▶ k-Means as a representative-based clustering method can only find convey clusters
and must assign every data point to a cluster.

▶ Density-based clustering methods determine clusters as regions having
consistently high density and label isolated data points as noise

▶ Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

108 / 120

Density-Based Clustering

Fig. From Zaki and Meira (2014)

109 / 120

DBSCAN — the idea

▶ Epsilon Neighborhood of a data point x

Nϵ(x) = {y | d(x, y) ≤ ϵ}

contains all points having distance less than or equal to ε

▶ Data point x is called a core to ε its epsilon neighborhood contains at least
minpts data points (including x)

▶ Data point x is called a border point, if it is not a core, but belongs to the epsilon
neighborhood of a core

▶ All other data points are considered noise

110 / 120

Core, Border, and Noise

▶ Data point x is a core
▶ Data point y is a border point
▶ Data point z is noise

111 / 120

Reachability

▶ Data point x is directly reachable from data point y, if y is a core and x belongs to
the epsilon neighborhood of y, i.e.

x ∈ Nϵ(y)

▶ Data point x is (density) reachable from data point y,
▶ if there is a chain of data points x0, . . . , x1, so that

x0 = x ∧ xl = y

∀1 ≤ i ≤ l : xi is directly reachable from xi−1
▶ Reachability is not symmetric, since the data point y could be a core, but the data

point x is not

112 / 120

Connectedness and Density-Based Clusters

▶ Two data points x and y are called connected, if there is a core z, so that both x
and y are reachable from z

▶ Density-based cluster is a maximal subset of connected data points, i.e., there are
no data points that could be added

113 / 120

DBSCAN

▶ Intuition:
▶ Compute epsilon neighborhoods for all data points
▶ Determine all cores
▶ Determine noise
▶ Grow a new density-based cluster from each data point that does not yet belong to

an already-determined cluster
▶ Note that DBSCAN is not deterministic, since the assignment of data point to

clusters depends on the order in which data points are considered

114 / 120

Pseudo-code DBSCAN

115 / 120

DBSCAN in Action

116 / 120

Clustering Cars based on Power and Weight
demo/DBSCAN_example.py

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import DBSCAN
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')
extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values
extract origin as target value y
y = cars.iloc[:, 7].values
normalize data
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X) # determine min and max
X_normalized = min_max_scaler.transform(X)
DBSCAN
db = DBSCAN(eps=0.05,min_samples=5,metric='euclidean')
db.fit_predict(X_normalized)
plot cars
U.S. : o / Europe: x / Japan : +
m = ['o' if o==1 else 'x' if o==2 else '+' for o in y]
Noise : black / Cluster 1 : red / Cluster 2 : blue /
Cluster 3 : green / Cluster 4 : yellow
c = ['black' if l==-1 else 'red' if l==0 else 'blue' if l==1
else 'green' if l==2 else 'yellow' for l in db.labels_]
for i in range(0,len(X)):

plt.scatter(X[i,0], X[i,1], color=c[i], marker=m[i])
plt.xlabel('Power [hp]')
plt.ylabel('Weight [lbs]')
plt.show()

117 / 120

Clustering Cars based on Power and Weight

118 / 120

Summary

▶ Hierarchical clustering determines a sequence of clusterings that can be visualized
in a dendrogram

▶ DBSCAN as a density-based clustering method can find non-convex clusters and
is able to label data points as noise

▶ DBSCAN comes with two hyper parameters ε and minpts that need to be
carefully tuned based on the data

119 / 120

120 / 120

