
Data Science and Advanced Programming — Lecture 8
Supervised Machine Learning II (Classification)

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

November 3rd, 2025 | 12:30 - 16:00 | Internef 263

1 / 126

Today’s Roadmap

1. Recall: Supervised Machine Learning - Classification
2. k-Nearest-Neighbors
3. Evaluating Classifiers
4. Naïve Bayes
5. Decision Trees
6. Combining Models (Boosting etc.; take-home materials)

1 / 126

Classification — Motivation

2 / 126

Recall: “our example”

▶ Classification aims at predicting a nominal target feature based on one or multiple
other (numerical) features.

▶ Example: Predict the origin (U.S. vs. Non-U.S.) of a car based on its power (in
horsepower) and weight (in pounds).

▶ Since our predictor f(x) takes values in a discrete set G, we can always divide the
input space into a collection of regions labeled according to the classification.

3 / 126

Which country?
Data source: https://archive.ics.uci.edu/ml/datasets/Auto+MPG

4 / 126

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Classification Bondaries

▶ Input vector x ∈ RD, assign it to one of K discrete classes Ck, k = 1, . . . ,K.
▶ Assumption: classes are disjoint, i.e., input vectors are assigned to exactly one

class.
▶ Idea: Divide input space into decision regions whose boundaries are called decision

boundaries/surfaces.

5 / 126

Decision Theory

▶ We want a framework that allows us to make optimal decisions (in situations
involving uncertainty).

▶ Consider, for example, a medical diagnosis problem in which we have taken an
X-ray image of a patient, and we wish to determine whether the patient has
cancer or not.

▶ In this case, the input vector x is the set of pixel intensities in the image, and
output variable t will represent the presence of cancer, which we denote by the
class C1, or the absence of cancer, which we denote by the class C2.

▶ We might, for instance, choose t to be a binary variable such that t = 0
corresponds to class C1 and t = 1 corresponds to class C2.

6 / 126

Decision Theory — more abstract

▶ For a sample x, decide which class (Ck) it is from.
▶ Ideas to do so:

1. Maximum Likelihood
2. Minimum Loss/Cost (e.g. misclassification rate)
3. Maximum Aposteriori (MAP)

7 / 126

2. k-Nearest-Neighbors (kNN)

▶ k-Nearest-Neighbors (kNN) is another simple-yet-popular classification method
that often serves as a baseline.

▶ kNN is a so-called lazy learning method, which reflects that it does not actually
learn the parameters of a model, but always looks at the training data.

▶ no cost for training a model, i.e., learning parameters.
▶ cost at runtime (i.e., when classifying a data point).
▶ depends on the amount of training data available.

8 / 126

k-Nearest-Neighbors (kNN)

▶ To classify a previously unseen data point, kNN identifies the k closest data points
in the training data according to a suitable distance measure.

▶ predicts the nominal target feature (class) as the most frequent value among the
k closest data points.

9 / 126

Example

10 / 126

Minkowski Distance
For your personal entertainment: https://de.wikipedia.org/wiki/Hermann_Minkowski

▶ Minkowski Distance as a suitable distance measure

d
(
x, x′

)
=

(m∑
i=1

∣∣xi − x′i
∣∣p)1/p

with p as a constant.
▶ Minkowski Distance is a metric, i.e., it is

▶ non-negative.
▶ symmetric ∀x, x′ : d (x, x′) ≥ 0.
▶ subadditive ∀x, x′, x′′ : d (x, x′′) ≤ d (x, x′) + d (x′, x′′) (triangle inequality).

11 / 126

https://de.wikipedia.org/wiki/Hermann_Minkowski

Manhattan Metric
Manhattan Distance as Minkowski Distance with p = 1

d
(
x, x′

)
=

m∑
i=1

∣∣xi − x′i
∣∣

12 / 126

Euclidean Metric
Euclidean Distance as Minkowski Distance with p = 2

d
(
x, x′

)
=

√√√√ m∑
i=1

(xi − x′i)
2

13 / 126

Normalization and Standardization

▶ When computing Minkowski Distances, the magnitudes of features matter, e.g.:
▶ Car 1 with 100hp weighting 2000lbs.
▶ Car 2 with 100hp weighting 2200lbs.
▶ Car 3 with 300hp weighting 2000lbs.

Car 1 has the same distance from Car 2 as from Car 3.
▶ To avoid features with larger magnitude (i.e., generally larger values) dominating

the distances computed, it makes sense to normalize or standardize features
upfront.

14 / 126

Normalization

▶ Min-Max Normalization maps feature values onto [0, 1].
▶ let z1, . . . , zn be the feature values observed in the data.
▶ the transformed feature value is then obtained as

z′i =
zi −minj (zj)

maxj (zj)−minj (zj)

▶ Minimum is mapped to 0; maximum is mapped to 1.
▶ Min-Max Normalization is sensitive to outliers in the data.

15 / 126

Standardization

▶ Standardization transforms feature values, so that they reflect by how many
standard deviations a value deviates from the mean observed in the data.

▶ let z1, . . . , zn be the feature values observed in the data.
▶ the transformed feature value is then obtained as

z′i =
zi − µ

σ

with

µ =
1
n

n∑
i=1

zi σ =

√√√√1
n

n∑
i=1

(zi − µ)2

16 / 126

Predicting Origin from Power and Weight
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import StandardScaler

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values

extract origin (0:Non-U.S. / 1:U.S.) as target vector y
y = cars.iloc[:, 7].values

split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 random_state=0)

use kNN with k = 3
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
y_predicted = knn.predict(X_test)

compute accuracy
print(accuracy_score(y_true=y_test, y_pred=y_predicted))

17 / 126

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Predicting Origin from Power and Weight
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values

extract origin (0:Non-U.S. / 1:U.S.) as target vector y
y = cars.iloc[:, 7].values

split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 random_state=0)

normalize data
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X_train) # determine min and max
X_train_normalized = min_max_scaler.transform(X_train)
X_test_normalized = min_max_scaler.transform(X_test)

use kNN with k = 3
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
y_predicted = knn.predict(X_test)

compute accuracy
print(accuracy_score(y_true=y_test, y_pred=y_predicted))

18 / 126

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Predicting Origin from Power and Weight
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html;
See demo/auto_class_knn.py

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values

extract origin (0:Non-U.S. / 1:U.S.) as target vector y
y = cars.iloc[:, 7].values

split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2 random_state=0)
normalize data
scaler = StandardScaler()
scaler.fit(X_train) # determine mean and standard deviation
X_train_normalized = scaler.transform(X_train)
X_test_normalized = scaler.transform(X_test)

use kNN with k = 3
knn = KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train, y_train)
y_predicted = knn.predict(X_test)

compute accuracy
print(accuracy_score(y_true=y_test, y_pred=y_predicted))

19 / 126

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html

Summary: kNN

k-Nearest-Neighbors as a lazy classification method that classifies a previously
unseen data point based on the classes of the k closest data points from the
training data.

20 / 126

3. Evaluating Classifiers

▶ How can we assess the prediction quality of a classifier?
▶ Initially, we’ll consider the case of binary classification (and extend it later to

multi-class classification).
▶ Confusion matrix shows the performance of a classifier.

Predicted
0(No) 1 (Yes)

Actual 0(No) True Negatives (TN) False Positives (FP)
1 (Yes) False Negatives (FN) True Positives (TP)

21 / 126

Accuracy and Error Rate

▶ Accuracy measures the classifier’s ability to put data points into the right class.

Accuracy =
TN + TP

TN + FP + FN + TP
▶ Error rate, as the counterpart to accuracy, reflects to what extent the classifier

puts data points into the wrong class.

ER = (1− Accuracy) =
FN + FP

TN + FP + FN + TP

22 / 126

False-Positive Rate and True Positive Rate

▶ False-positive rate is the fraction of negative (0 / No) data points that is falsely
classified as positive (1 / Yes)

FPR =
FP

TN + FP

▶ True-positive rate is the fraction of positive (1 / Yes) points that is correctly
classified as positive (1 / Yes)

TPR =
TP

FN + TP

23 / 126

Precision and Recall

▶ Precision reflects the classifier’s ability to correctly detect positive (1 / Yes) data
points

Precision =
TP

FP + TP
▶ Recall reflects the classifier’s ability to detect all positive (1 / Yes) data points

Recall =
TP

FN + TP

24 / 126

F1-measure

▶ Precision and Recall are widely used in Information Retrieval
▶ F1-Measure as the harmonic mean of precision and recall combines both measures

in a single measure
F1 = 2 Precision · Recall

Precision + Recall

25 / 126

Accuracy and Error Rate

Confusion matrix for our binary car classifier (Non-U.S. = 0 vs. U.S. = 1) using
logistic regression on power and weight

Predicted
0 (No) 1 (Yes)

Actual 0(No) 20(TN) 9(FP)
1 (Yes) 6(FN) 44(TP)

Accuracy =
20+ 44

20+ 9+ 6+ 44 =
64
79

ER =
9+ 6

20+ 9+ 6+ 44 =
15
79

26 / 126

False-Positive Rate and True Positive Rate

Confusion matrix for our binary car classifier (Non-U.S. = 0 vs. U.S. =1) using logistic
regression on power and weight.

Predicted
0 (No) 1 (Yes)

Actual 0(No) 20(TN) 9(FP)
1 (Yes) 6(FN) 44(TP)

FPR =
9

20+ 9 =
9
29

TPR =
44

6+ 44 =
44
50

27 / 126

Precision and Recall

Confusion matrix for our binary car classifier (Non-U.S. = 0 vs. U.S. =1) using logistic
regression on power and weight.

Predicted
0 (No) 1 (Yes)

Actual 0(No) 20(TN) 9(FP)
1 (Yes) 6(FN) 44(TP)

Precision =
44

9+ 44 =
44
53

Recall =
44

6+ 44 =
44
50

28 / 126

Computing Quality Measures

generate confusion matrix
conf = confusion_matrix(y_true=y_test, y_pred=y_predicted)
print("confusion matrix ", conf)

compute accuracy
acc_score =accuracy_score(y_true=y_test, y_pred=y_predicted) # 0.7468354430379747
print("accuracy ", acc_score)

compute precision
prec_score = precision_score(y_true=y_test, y_pred=y_predicted) # 0.77966101610491526
print("precision ", prec_score)

compute recall
recall = recall_score(y_true=y_test, y_pred=y_predicted) # 0.8679
print("recall ", recall)

compute f1
f1 = f1_score(y_true=y_test, y_pred=y_predicted) # 0.8214285714285715
print("f1 ", f1)

29 / 126

Micro- and Macro- Averages

▶ When dealing with more than two classes, the confusion matrix has one column
and one row per class

Predicted
0 1 2

Actual
0 49 0 1
1 10 0 5
2 8 0 6

▶ For each class i, we can now determine the numbers TNi,FPi, FNi,TPi,
assuming that it is the positive class, and all others are treated as negative.

30 / 126

Micro- and Macro- Averages (II)

Micro-averages plug per-class numbers into the definitions

Precisionmicro =
TP0 + . . .+ TPk−1

FP0 + . . .+ FPk−1 + TP0 + . . .+ TPk−1

Recallmicro =
TP0 + . . .+ TPk−1

FN0 + . . .+ FNk−1 + TP0 + . . .+ TPk−1

Macro-averages average per-class quality assessments

Precisionmacro =
1
k

k−1∑
i=0

TPi
FPi + TPi

Recallmacro =
1
k

k−1∑
i=0

TPi
FNi + TPi

31 / 126

4. Naive Bayes

▶ Naïve Bayes is a classification method that is often used for text classification
(e.g., e-mails as SPAM or HAM), but variants for arbitrary data exist.

▶ Naïve Bayes supports an arbitrary number of classes.
▶ The name “Naïve Bayes” refers to the fact that Bayes’ theorem is used and that a

(naïve) independence assumption is made about the data.

32 / 126

Recall: Events and Probabilities

▶ Let’s consider two events A and B
▶ A is the event that an object is a

circle.
▶ B is the event that an object is green

P[A] = 5
9 P[B] = 4

9
▶ We refer to A ∧ B as the joint event

that an object is a green circle

P[A ∧ B] = P[A,B] = 3
9

33 / 126

Conditional Probabilities

The conditional probability P[B | A](B
given A) is the probability that the event
B occurs if we already know that the event
A has occurred

P[B | A] = P[A ∧ B]
P[A]

in our case

P[B | A] = 3
5

P[A | B] = 3
4

34 / 126

independence

▶ two events A and B are called
(stochastically) independent, if the
following holds for their joint
probability

P[A ∧ B] = P[A]P[B]

▶ In our example, the events A and B
are not independent

3
9 ̸= 5

9
4
9

35 / 126

Recall again: Bayes’ Theorem

▶ Thomas Bayes (1701-1761) famously observed the following theorem regarding
the conditional probabilities of events.

P[A | B] = P[B | A]P[A]
P[B]

▶ Bayes’ theorem is particularly useful when, for two events A and B, one of the
conditional probabilities is easy to estimate, but the other is hard to estimate.

36 / 126

Bayes’ Theorem in Action

▶ Example: Examining animals in the wild
▶ A is the event that the animal is a fox.
▶ B is the event that the animal has rabies.

- Assume that we know the following probabilities
▶ P[A] = 0.1 (e.g., estimated based on video surveillance)
▶ P[B] = 0.05 (e.g., estimated based on hunted animals)
▶ P[A | B] = 0.25 (e.g., estimated based on deceased animals)

▶ We can now estimate the probability that a fox has rabies

P[B | A] = 0.25 · 0.05
0.1 = 0.125

37 / 126

Moving on: Bag-of-Words Model

▶ Common preprocessing steps for text documents
▶ convert all letters to lower case
▶ remove stop words (e.g., a, the, or, of)
▶ split documents at white spaces (e.g., _, n, t) and punctuation marks (e.g., ?!:,;)

▶ The document is then viewed as a bag of words (i.e., a multi-set preserving
frequency information)

38 / 126

Data Matrix

▶ Documents as bags-of-words with their respective class can be viewed as a data
matrix.

▶ Example: Five documents d1, . . . , d5 consisting of words a, b, x, y and belonging to
either class Spam or Ham.

Words Class
a b x y -

d1 2 1 0 0 H
d2 0 1 2 2 S
d3 2 1 1 1 H
d4 1 0 2 2 S
d5 1 1 0 0 H

39 / 126

Naïve Bayes for Text Classification

▶ For a previously unseen document d and any class c, we need to estimate the
conditional probability

P[c | d]

that c is the correct class for document d.
▶ The document is then assigned to the class c, which has the highest probability.

40 / 126

Naïve Bayes for Text Classification

▶ Bayes’ theorem allows rewriting the conditional probability as

P[c | d] = P[d | c] · P[c]
P[d]

▶ since P[d] is constant for any document

P[c | d] ∝ P[d | c] · P[c]

▶ with P[c] as the so-called class prior.
▶ P[d | c] as the probability that document d is from class c → How can we

estimate these probabilities?

41 / 126

Class Priors in Naïve Bayes
Class priors can be estimated based on the training data as

P[c] = # Documents from Class c
Documents

Example:

Words Class
a b x y -

d1 2 1 0 0 H
d2 0 1 2 2 S
d3 2 1 1 1 H
d4 1 0 2 2 S
d5 1 1 0 0 H

P[H] = 3/5
P[S] = 2/5

42 / 126

Conditional Probabilities in Naïve Bayes

▶ The conditional probability that document d is from class c is estimated based on
the contained words as

P[d | c] ∝
∏
w∈d

P[w | c]f(w,d)

▶ with f(w, d) as the frequency of word w in document d and

P[w | c] = # Occurences of w in Document from Class c
Word Occurrences in Documents from Class c

▶ as the probability that we randomly draw the word w from the documents in class
c.

43 / 126

Conditional Probabilities in Naïve Bayes

▶ Intuitively, the conditional probability

P[d | c] ∝
∏
w∈d

P[w | c]f(w,d)

corresponds to the probability that we randomly draw exactly the words in d
when drawing words from documents in c - Note that we make the simplifying
assumption that words occur independently from each other (hence the
product), which explains the label “naïve”

44 / 126

Example: Conditional Probabilities in Naïve Bayes

Words Class
a b x y -

d1 2 1 0 0 H
d2 0 1 2 2 S
d3 2 1 1 1 H
d4 1 0 2 2 S
d5 1 1 0 0 H

P[a | H] = 5/10 P[a | S] = 1/10
P[b | H] = 3/10 P[b | S] = 1/10
P[x | H] = 1/10 P[x | S] = 4/10
P[y | H] = 1/10 P[y | S] = 4/10

45 / 126

Putting Naïve Bayes to Use

▶ Let’s classify a previously unseen document
a b x y

d6 2 2 1 1 ?

▶ We obtain the following probabilities

P [H | d6] = P [d6 | H] · P[H]

=

(
5
10 · 5

10 · 3
10 · 3

10 · 1
10 · 1

10

)
· 35 = 135/106

P [S | d6] = P [d6 | S] · P[S]

=

(
1
10 · 1

10 · 1
10 · 1

10 · 4
10 · 4

10

)
· 25 = 6.4/106

▶ and thus classify the document as Ham.

46 / 126

Working with Probabilities

When implementing probabilistic methods like Naïve Bayes, it is often useful to apply a
logarithmic transformation to avoid underflows and other numerical issues.

logP[c | d] ∝ logP[d | c] + logP[c]
logP[d | c] ∝

∑
w∈d

f(w, d) · logP[w | c]

47 / 126

Classifying Reviews with Naïve Bayes

We’ll work on a dataset of more than 400,000 reviews from Amazon about unlocked
mobile phones: https://www.kaggle.com/PromptCloudHQ/
amazon-reviews-unlocked-mobile-phones/version/1

We want for instance to predict the rating (1-5) from the content

48 / 126

https://www.kaggle.com/PromptCloudHQ/amazon-reviews-unlocked-mobile-phones/version/1
https://www.kaggle.com/PromptCloudHQ/amazon-reviews-unlocked-mobile-phones/version/1

Kaggle.com

49 / 126

Classifying Reviews with Naïve Bayes
https://scikit-learn.org/stable/modules/naive_bayes.html; Code example here: demo/Naive_B_kaggle.py

import math
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
load data
reviews = pd.read_csv("Amazon_Unlocked_Mobile.csv", encoding='utf-8')

X = reviews.iloc[:,4].values
X_clean = X[pd.notnull(X)]
y = reviews.iloc[:,3].values
y_clean = y[pd.notnull(X)]

convert documents into bags-of-words
vectorizer = CountVectorizer()
X_cnt = vectorizer.fit_transform(X_clean)

split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X_cnt, y_clean,
test_size=0.2, random_state=0)

train naive bases classifier
nb = MultinomialNB(alpha=0.0)
nb.fit(X_train, y_train)

50 / 126

https://scikit-learn.org/stable/modules/naive_bayes.html

Classifying Reviews with Naïve Bayes

predict labels
y_predicted = nb.predict(X_test)

compute confusion matrix
print(confusion_matrix(y_true=y_test, y_pred=y_predicted))

compute accuracy
print(accuracy_score(y_true=y_test, y_pred=y_predicted))

print class priors
for c in range(0, len(nb.classes_)):

print('Class: ' + str(c))
print(str(math.exp(nb.class_log_prior_[c])))

print probabilities per class for words in {android, apple, ... , error, crash}
feature_names = vectorizer.get_feature_names()
for w in ['android', 'apple', 'good', 'bad', 'terrible', 'error', 'crash']:

print('Word: ' + w)
for c in range(0, len(nb.classes_)):

print(str(c) + " : " + str(math.exp(nb.coef_[c][feature_names.index(w)])))

51 / 126

5. Decision Trees

A simple decision tree to decide how you will spend the evening.

52 / 126

Decision Trees — what is it about

▶ Decision trees: Supervised Learning.
▶ Decision trees are a family of classification methods that support an arbitrary

number of classes.
▶ A decision tree provides a sequence of (binary) decisions which have to be made

in order to decide which class a data point belongs to.
▶ Decision trees are often praised for their interoperability:

▶ we can see why a data point ended up in a specific class, and in principle- the
classification could be performed by a human user not knowing anything about ML.

53 / 126

Benefits of Decision Trees

▶ The computational cost of making the tree is fairly low.
▶ The cost of using it is even lower: O(logN), where N is the number of data points

(cf. Bisection methods).
▶ Important for machine learning:

▶ querying the trained algorithm is fast.
▶ the result is immediately easy to understand.
▶ makes people trust it more than getting an answer from a black box.

▶ e.g.: phone a helpline for computer faults. The phone operators are guided
through the decision tree by your answers to their questions.

54 / 126

Idea of the Tree

▶ We start at the root (base) of the tree and progress down to the leaves, where
we receive the classification decision.

▶ At each stage we choose a question that gives us the most information given what
we know already. Encoding this mathematically is the task of information theory.

▶ The trees can even be turned into a set of if-then rules, suitable for use in a rule
induction system.

55 / 126

Information Theory

Claude E. Shannon (1916-2001) proposed
Information Theory, which is important
for, e.g.:
▶ encoding and compression.
▶ data transmission (e.g., in networks)

and has applications in.
▶ Machine Learning.
▶ Information Retrieval.
▶ Natural Language Processing.

56 / 126

Information Theory: Claude E. Shannon

57 / 126

Ludwig Boltzmann

* 20. Februar 1844 in Wien;
† 5. September 1906 in Duino, Austia-Hungary

58 / 126

Information Theory
▶ We ask how much information is received when we observe a specific value for

this variable.
▶ The amount of information can be viewed as the’degree of surprise’ on learning

the value of x.
▶ If we are told that a highly improbable event has just occurred, we will have

received more information than if we were told that some very likely event has just
occurred.

▶ If we knew that the event was certain to happen we would receive no information.

59 / 126

Information Theory

▶ Our measure of information content will therefore depend on the probability
distribution p(x).

▶ We therefore look for a quantity h(x) that is a monotonic function of the
probability p(x) and that expresses the information content.

▶ The form of h(·) can be found by noting that if we have two events x and y that
are unrelated, then the information gain from observing both of them should be
the sum of the information gained from each of them separately, so that
h(x, y)=h(x)+h(y).

▶ Two unrelated events will be statistically independent and so p(x, y) = p(x)p(y).
▶ From these two relationships, it is easily shown that h(x) must be given by the

logarithm of p(x) → h(x) = − log(p(x)).

60 / 126

Entropy
▶ Entropy quantifies the amount of uncertainty of a random variable Y.
▶ “Average amount of information”

H(Y) = −
∑

y
P[y] log2 P[y]

▶ Negative sign: ensures that information is positive or zero.
▶ Choice of Basis because of “bits” (binary integers).
▶ Example: Let’s consider a fair coin

P(Y = head) = P(Y = tail) = 1
2

H(Y) = −
(
1
2 log

1
2 +

1
2 log

1
2

)
= 1

61 / 126

Binary Decision Theory
▶ Binary decision : “positive” with probaility p, “negative” with probability 1 - p
▶ Maximal entropy of 1 lies by p = 0.5

62 / 126

Entropy –– Python Code
demo/entropy.py

import numpy as np
import matplotlib.pyplot as plt
fig=plt.figure()
ax=fig.add_subplot(111)
ax.plot(np.linspace(0.01,1),np.log2(np.linspace(0.01,1)))
ax.set_xlabel("P(x)")
ax.set_ylabel("log2(P(x))")
plt.show()

63 / 126

Entropy (II)

▶ Entropy quantifies the amount of uncertainty of a
random variable Y.

H(Y) = −
∑

y
P[y] log2 P[y]

▶ Example: Let’s consider a biased coin

P(Y = head) =
3
4 P(Y = tail) = 1

4
H(Y) = −

(
3
4 log

3
4 +

1
4 log

1
4

)
≈ 0.6579

▶ Less uncertainty for the biased coin, or put differently,
knowing the outcome of fair coin provides more
information.

64 / 126

Entropy (III)

▶ Entropy quantifies the amount of uncertainty of a
random variable Y.

H(Y) = −
∑

y
P[y] log2 P[y]

▶ Example: Let’s consider a fair dice

P(Y = n) = 1
6 with n ∈ {1, . . . , 6}

H(Y) = −
(
1
6 log

1
6 + . . .

1
6 log

1
6

)
≈ 2.5849

65 / 126

Entropy (IV)

▶ Entropy quantifies the amount of uncertainty of a
random variable Y.

H(Y) = −
∑

y
P[y] log2 P[y]

▶ Example: Let’s consider a biased dice

P(Y = 1) = 1
2

P(Y = n) = 1
10 with n ∈ {2, . . . , 6}

H(Y) = −
(
1
2 log

1
2 +

1
10 log

1
10 + . . .

1
10 log

1
10

)
≈ 2.1609

66 / 126

Conditional Entropy

▶ Conditional entropy quantifies the amount of uncertainty of a random variable Y
if the value of another random variable X is known.

H(Y | X) =
∑

x
P[x]H(Y | x)

▶ Example: Let’s again consider a fair dice
▶ random variable Y indicates face of dice {1, . . . , 6}
▶ random variable X indicates whether face is odd or even {o, e}

P(Y = n) = 1
6 with n ∈ {1, . . . , 6}

P(X = o) = P(X = e) = 1
2

67 / 126

Conditional Entropy (II)
Example (cont’d): Let’s look at the conditional probabilities

y x P[y | x]
1 o 1/3
1 e 0
2 o 0
2 e 1/3
3 o 1/3
3 e 0
4 o 0
4 e 1/3
5 o 1/3
5 e 0
6 o 0
6 e 1/3

H(Y | o) = −
(
1
3 log

1
3 + 0+ 1

3 log
1
3 + 0+ . . .

1
3 log

1
3 + 0

)
≈ 1.5849

H(Y | e) = −
(
0+ 1

3 log
1
3 + 0+ 1

3 log
1
3 + 0+ . . .

1
3 log

1
3

)
≈ 1.5849

H(Y | X) = 1
2H(Y | o) + 1

2H(Y | e)

≈ 1.5849

Intuition: Knowing whether an odd or even face is shown reduces the amount of uncertainty.

68 / 126

Information Gain

▶ Information gain (also: mutual information) measures how much information is
gained about a random variable Y if the value of another random variable X is
known.

I(X,Y) =
∑

x

∑
y

P[x ∧ y] log
(

P[x ∧ y]
P[x]P[y]

)
▶ which can be rewritten as

I(X,Y) = H(X)− H(X | Y)
I(X,Y) = H(Y)− H(Y | X)

69 / 126

Information Gain (II)

▶ Information Gain (II)- Example: Let’s again consider a fair dice.
▶ random variable Y indicates face of dice {1, . . . , 6}.
▶ random variable X indicates whether face is odd or even {o, e}

I(X,Y) = H(Y)− H(Y | X)
≈ 2.5849− 1.5849 = 1

70 / 126

Construct a Decision Tree

▶ If the feature separates the example
into 50% positive and 50% negative,
then the amount of entropy is at a
maximum, and knowing about that
feature is very useful to us.

▶ For our decision tree, the best feature
to pick as the one to classify on now is
the one that gives you most
information, i.e., the one with the
highest entropy.

▶ After using that feature, we
re-evaluate the entropy of each feature
and again pick the one with the
highest entropy.

71 / 126

Recursively Growing a Decision Tree

▶ We’ll now learn to generate a decision tree recursively.
▶ random variable Y indicates class labels (e.g., Europe, U.S.)
▶ random variable X indicates the outcome of a binary decision (e.g., does the car

weight more than 2000 lbs).
▶ In each step, we need to determine the best possible decision criterion to split the

remaining data points (hint: we’ll use information gain to this end).

72 / 126

Recursively Growing a Decision Tree (II)

▶ Recursive top-down generation of a decision tree (i.e., from root to leaves).
▶ if only a few data points are left or most of them belong to a single class, then

generate a leaf with majority class.
▶ otherwise, identify the best possible decision criterion, split the data accordingly,

and recursively generate left and right decision subtree.

73 / 126

Recursively Growing a Decision Tree: pseudo-code
snippet

74 / 126

Splits for Numerical and Ordinal Features

▶ For numerical and ordinal features we can compare the value of the feature x
against a threshold a

X : x ≤ a
▶ The random variable X thus indicates whether the feature value x of a data point

is smaller or equal than the threshold a (true) or larger (false).
▶ In theory, there can be an infinite number of possible thresholds a to consider; in

practice, it is good enough to consider the feature values that appear in the data.

75 / 126

Splits for Numerical and Ordinal Features

▶ Example: Let’s assume that we have observed the following values for a feature x
in our training data

x ∈ {2, 4, 5, 6, 8, 10, 12}
▶ We need to consider the following decision criteria

X : x ≤ a with a ∈ {2, 4, 5, 6, 8, 10}

▶ Note: Some implementations consider thresholds midway between values observed
in the data, i.e.:

X : x ≤ a with a ∈ {3.5, 4.5, 5.5, 7, 9, 11}

76 / 126

Splits for Nominal Features

▶ For nominal features we can check whether the value of the feature x is in a
subset A of observed feature values

X : x ∈ A

▶ The random variable X thus indicates whether the feature value x of a data point
is contained in the subset A (true) or not (false). If there are n observed values
for feature x in our data, we need to consider an exponential number of 2(n−1) − 1
subsets A.

77 / 126

Splits for Nominal Features

▶ Example: Let’s assume that we have observed the following values for a feature x
in our training data

x ∈ {r, g, b,w}
▶ We need to consider the following decision criteria

X : x ∈ A with
A ∈ {{r}, {g}, {b}, {w}, {r, g}, {r, b}, {r,w}, . . .

▶ Note: There is no need to consider all 2n subsets, because (i) the empty set {}
does not split the data and (ii) a subset and its complementary set result in the
same split (e.g., {r} and {g, b,w} in our example).

78 / 126

.

If we grow the decision tree until all leaves contain only data points from a single
class,we’re prone to overfitting.

It is better to prune the decision tree by stopping the recursive generation, once less
than minSize data points are seen or at least minPercentage percent of data points
belong to the majority class.

79 / 126

Decision Trees (Example)

Example: Predict the risk of an insurance customer based on age and type of car.

Age Type of Car Risk
25 Roadster Low
20 Oldtimer High
25 Roadster Low
45 SUV High
20 Roadster High
25 SUV High

H(Risk) = −
((

1
3 log

1
3

)
+

(
2
3 log

2
3

))
= 0.9183

79 / 126

Decision Trees (Example)

Step 1: Determine the root of the decision tree
Decision criterion Age : 20

H(Risk | Age : 20) = 1
3H(Risk | Age ≤ 20) + 2

3H(Risk | Age > 20)

=
1
3(0) +

2
3(1)

= 0.6667
I(Risk,Age : 20) = 0.9183− 0.6667

= 0.2516

Age Type of Car Risk
25 Roadster Low
20 Oldtimer High
25 Roadster Low
45 SUV High
20 Roadster High
25 SUV High

80 / 126

Decision Trees (Example)

Decision criterion Age : 25

H(Risk | Age : 25) = 5
6H(Risk | Age ≤ 25) + 1

6H(Risk | Age > 25)

=
5
6

(
−
(
2
5 log

2
5 +

3
5 log

3
5

))
+

1
6(0)

= 0.8091
I(Risk,Age : 25) = 0.9183− 0.8091

= 0.1092

Age Type of Car Risk
25 Roadster Low
20 Oldtimer High
25 Roadster Low
45 SUV High
20 Roadster High
25 SUV High

81 / 126

Decision Trees (Example)

Decision criterion Type : {Oldtimer}

H(Risk | Type : {O}) = 1
6H(Risk | Type ∈ {O}) + 5

6H(Risk | Type /∈ {O})

=
1
6(0) +

5
6

(
−
(
2
5 log

2
5 +

3
5 log

3
5

))
= 0.8091

I(Risk,Type : {O}) = 0.9183− 0.8091
= 0.1092

Age Type of Car Risk
25 Roadster Low
20 Oldtimer High
25 Roadster Low
45 SUV High
20 Roadster High
25 SUV High

82 / 126

Decision Trees (Example)

Decision criterion Type : {Roadster}

H(Risk | Type : {R}) = 3
6H(Risk | Type ∈ {R}) + 3

6H(Risk | Type /∈ {R})

=
3
6

(
−
(
2
3 log

2
3 +

1
3 log

1
3

))
+

3
6(0)

= 0.4591
I(Risk,Type : {R}) = 0.9183− 0.4591

= 0.4592

Age Type of Car Risk
25 Roadster Low
20 Oldtimer High
25 Roadster Low
45 SUV High
20 Roadster High
25 SUV High

83 / 126

Decision Trees (Example)

Decision criterion Type : {SUV}

H(Risk | Type : {S}) = 2
6H(Risk | Type ∈ {S}) + 4

6H(Risk | Type /∈ {S})

=
2
6(0) +

4
6

(
−
(
1
2 log

1
2 +

1
2 log

1
2

))
= 0.6667

I(Risk,Type : {S}) = 0.9183− 0.6667
= 0.2516

Age Type of Car Risk
25 Roadster Low
20 Oldtimer High
25 Roadster Low
45 SUV High
20 Roadster High
25 SUV High

84 / 126

Decision Trees (Example)

▶ Pick Type : {Roadster} as the decision criterion for the root node, because it
achieves the highest information gain.

▶ Split the data accordingly and recursively grow decision trees for the obtained subsets
of the data.

85 / 126

Decision Trees (Example)
▶ For the right subtree, there is nothing to do, since all data points belong to a single

class

86 / 126

Decision Trees (Example)

▶ For the left subtree, there is only one decision criterion to consider, namely Age : 20

H(Risk) = −
(
1
3 log

1
3 +

2
3 log

2
3

)
= 0.9183

H(Risk | Age : 20) = 1
3H(Risk | Age ≤ 20) + 2

3H(Risk | Age > 20)

=
1
3(0) +

2
3(1)

= 0.6667
I(Risk,Age : 20) = 0.9183− 0.6667

= 0.2516

Age Type of Car Risk
25 Roadster Low
25 Roadster Low
20 Roadster High

87 / 126

Decision Trees (Example)

88 / 126

Decision Trees (Example)

89 / 126

90 / 126

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.tree import export_graphviz

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values

extract origin as target vector y
y = cars.iloc[:, 7].values

split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

learn decision tree
tree = DecisionTreeClassifier(criterion='entropy')
tree.fit(X_train,y_train)
y_predicted = tree.predict(X_test)

compute confusion matrix
print(confusion_matrix(y_true=y_test, y_pred=y_predicted))

compute accuracy
print(accuracy_score(y_true=y_test, y_pred=y_predicted)) # 0.620253164556962

91 / 126

Plotting the Decision Tree

Plotting the Decision Tree
export_graphviz(tree, out_file='tree.dot',
feature_names=['Power [HP]', 'Weight [lbs]'],
class_names=['U.S.A.','Europe','Japan'])
you need to have Graphviz (graphviz.org) installed to open the generated file
to generate a PDF from the .dot file, run: dot -Tpdf tree.dot -o tree.pdf

→ See next slide...

91 / 126

Plotting the Decision Tree: Result

92 / 126

Plotting the Decision Tree: Close-up

→ can we generate a simpler decision tree?

93 / 126

Predicting Origin from Power and Weight
demo/auto_tree_simple.py

The beginning is the same; but this time, we will limit the depth of the tree to 3:

learn decision tree of maximal depth 3
tree = DecisionTreeClassifier(criterion='entropy',max_depth=3)
tree.fit(X_train,y_train)
y_predicted = tree.predict(X_test)

compute confusion matrix
print(confusion_matrix(y_true=y_test,y_pred=y_predicted))

compute accuracy
print(accuracy_score(y_true=y_test,y_pred=y_predicted)) # 0.6582278481012658
#plot tree
export_graphviz(tree, out_file='tree.dot',

feature_names=['Power [HP]', 'Weight [lbs]'],
class_names=['U.S.A.','Europe','Japan'])

94 / 126

A Simpler Tree

95 / 126

Classification with the Zoo Data set
demo/zoo_predict_aux.py

!! ACTION REQUIRED !!

▶ Run the decision tree method yourself.

▶ Go to here: http://archive.ics.uci.edu/ml/datasets/zoo

▶ This dataset consists of 101 rows and 17 categorically valued attributes defining
whether an animal has a specific property or not (e.g.hairs, feathers,..).

▶ The first attribute represents the name of the animal and will be removed.

▶ The target feature consist of 7 integer values [1:7] which represents
[1:Mammal,2:Bird,3:Reptile,4:Fish,5:Amphibian,6:Bug,7:Invertebrate]

96 / 126

http://archive.ics.uci.edu/ml/datasets/zoo

6. Combining Models

97 / 126

Combining Models

▶ Motivation: let’s say we have a number of (predictive) models for a problem.

▶ e.g. Regression with polynomials (different degree).

▶ e.g. Classification with support vector machines (kernel type, parameters, see later in
this lecture/course).

▶ Often, improved performance can be obtained by combining different models.

▶ But how can we combine them together?

98 / 126

Ensemble Learning — what is it about?
See Bishop Chapter 14

▶ Ensemble learning determines multiple classification models (e.g., single method on
different samples or multiple methods) and aggregates their predictions.

▶ Ensembles are often more robust than individual classifiers.

99 / 126

Example: Majority Voting
▶ The simplest ensemble method trains different classifiers on the same training data and

uses majority voting to determine the class of an unseen data point.

100 / 126

Majority Voting — example
demo/majority.py

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.metrics import accuracy_score
load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values
extract origin as target vector y
y = cars.iloc[:, 7].values
split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

fit logistic regression model on training data
lr = LogisticRegression()
use kNN with k = 3
knn = KNeighborsClassifier(n_neighbors=3)

learn decision tree
tree = DecisionTreeClassifier(criterion='entropy')

voting classifier
vc = VotingClassifier(estimators=[('lr',lr),('knn',knn), ('tree', tree)], voting='hard')
vc.fit(X_train, y_train)
vc_y_predicted = vc.predict(X_test)
print(accuracy_score(y_true=y_test, y_pred=vc_y_predicted)) # 0.683544303797

101 / 126

Bagging
▶ Bagging (bootstrap aggregation) trains different classifiers on samples of the

training data and uses majority voting to determine the class of an unseen data point.

102 / 126

Bagging
demo/bagging.py

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.metrics import accuracy_score
load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values

extract origin as target vector y
y = cars.iloc[:, 7].values

split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

learn decision tree of maximal depth 2
tree = DecisionTreeClassifier(criterion='entropy', max_depth=2)

bagging classifier based on 10 decision trees
bc = BaggingClassifier(base_estimator=tree, n_estimators=10)
bc.fit(X_train, y_train)
bc_y_predicted = bc.predict(X_test)
print(accuracy_score(y_true=y_test, y_pred=bc_y_predicted)) # 0.6455696202531646

103 / 126

More formally: Committees

▶ A combination of models is often called a committee.

▶ Simplest way to combine models is to just average them together:

yCOM(x) = 1
M

M∑
m=1

ym(x)

▶ It turns out this simple method is better than (or same as) the individual models on
average (in expectation).

▶ And usually slightly better.

▶ But there are better methods, which we shall discuss.

104 / 126

Error of individual models

▶ Consider individual models Ym(x), assume they can be written as true value plus error:

ym(x) = h(x) + ϵm(x)

▶ The expected value of the error of an individual model is then:

Ex
[
{ym(x)− h(x)}2

]
= Ex

[
ϵm(x)2]

▶ The average error made by an individual model is then:

EAV =
1
M

M∑
m=1

Ex
[
ϵm(x)2]

105 / 126

Error of Committee
The committee

yCOM(x) = 1
M

M∑
m=1

ym(x)

has expected error

ECOM = Ex

{(1
M

M∑
m=1

ym(x)
)

− h(x)
}2

= Ex

{(1
M

M∑
m=1

h(x) + ϵm(x)
)

− h(x)
}2

= Ex

{(1
M

M∑
m=1

ϵm(x)
)

+ h(x)− h(x)
}2 = Ex

{ 1
M

M∑
m=1

ϵm(x)
}2

106 / 126

Committee Error vs. Individual Error
▶ So, the committee error is

ECOM = Ex

{ 1
M

M∑
m=1

ϵm(x)
}2 =

1
M2

M∑
m=1

M∑
n=1

Ex [ϵm(x)ϵn(x)]

▶ If we assume errors are uncorrelated, Ex [ϵm(x)ϵn(x)] = 0 when m/n, then:

ECOM =
1

M2

M∑
m=1

Ex
[
ϵm(x)2] = 1

MEAV

▶ However, errors are rarely uncorrelated

▶ For example, if all errors are the same, ϵm(x) = ϵn(x), then ECOM = EAV

▶ Using Jensen’s inequality (convex functions), can show ECOM ≤ EAV

107 / 126

Boosting (advanced — to read at home)

▶ Boosting is a technique for combining classifiers into a committee.

▶ We describe AdaBoost (adaptive boosting), the most commonly used variant.

▶ Boosting is a meta-learning technique.

▶ Combines a set of classifiers trained using their own learning algorithms.

▶ Magic: can work well even if those classifiers only perform slightly better than random!

108 / 126

The Boosting Model

▶ We consider two-class classification problems, training data (xi, ti), with ti ∈ {−1, 1}.

▶ In boosting we build a “linear” classifier of the form:

y(x) =
M∑

m=1
αmym(x)

▶ A committee of classifiers, with weights.
▶ In boosting terminology:

▶ Each ym(x) is called a weak learner or base classifier.
▶ Final classifier y(x) is called a strong learner.

▶ Learning problem: how do we choose the weak learners ym(x) and weights αm ?

109 / 126

Example — Thresholds

▶ Let’s consider a simple example where weak learners are thresholds

▶ i.e. each ym(x) is of the form:
ym(x) = xi > θ

▶ To allow different directions of threshold, include p ∈ {−1,+1} :

ym(x) = pxi > pθ

110 / 126

Choosing Weak Learners

▶ Boosting is a greedy strategy for building the strong learner

y(x) =
M∑

m=1
αmym(x)

▶ Start by choosing the best weak learner, use it as y1(x).

▶ Best is defined as that which minimizes number of mistakes made (0-1 classification
loss).

▶ i.e. search over all p, θ, i to find best ym(x) = pxi > pθ.
111 / 126

Choosing Weak Learners

▶ The first weak learner Y1(x) made some mistakes.
▶ Choose the second weak learner y2(x) to try to get those ones correct

▶ Best is now defined as that which minimizes weighted number of mistakes made
▶ Higher weight given to those y1(x) got incorrect.

→ Strong learner now y(x) = α1y1(x) + α2y2(x).

112 / 126

Choosing Weak Learners

▶ Repeat: re-weight examples and choose new weak learner based on weights.

▶ Green line shows decision boundary of strong learner.

113 / 126

What About Those Weights?

▶ So exactly how should we choose the weights for the examples when classified
incorrectly?

▶ And what should the αm be for combining the weak learners Ym(x)?

▶ As usual, we define a loss function, and choose these parameters to minimize it.

114 / 126

Exponential Loss

▶ Boosting attempts to minimize the exponential loss
function

En = exp {−tny (xn)}

error on nth training example.
▶ Exponential loss is differentiable approximation to 0/1

loss
▶ Better for optimization
▶ Total error

E =
N∑

n=1
exp {−tny (xn)}

115 / 126

Minimizing Exponential Loss
▶ Let’s assume we’ve already chosen weak learners
▶ Y1(x), . . . ,Ym−1(x) and their weights α1, . . . , αm−1.
▶ Define fm−1(x) = α1Y1(x) + . . .+ αm−1Ym−1(x)
▶ Just focus on choosing ym(x) and αm.
▶ Greedy optimization strategy.
▶ Total error using exponential loss is:

E =
N∑

n=1
exp {−tny (xn)} =

N∑
n=1

exp {−tn [fm−1 (xn) + αmym (xn)

=
N∑

n=1
exp {−tnfm−1 (xn)− tnαmym (xn)}

=
N∑

n=1
exp {−tnfm−1 (xn)}︸ ︷︷ ︸

weight w(m)
n

exp {−tnαmym (xn)}

116 / 126

Weighted Loss

▶ On the m-th iteration of boosting, we are choosing Ym and αm to minimize the
weighted loss:

E =
N∑

n=1
w(m)

n exp {−tnαmym (xn)}

▶ where w(m)
n = exp {−tnfm−1 (xn)}.

▶ Can define these as weights since they are constant wrt ym and αm.

▶ We’ll see they’re the right weights to use.

117 / 126

Minimization wrt ytext

▶ Consider the weighted loss

E =
N∑

n=1
w(m)

n e−tnαmym(xn) = e−αm
∑

n∈Tm

w(m)
n + eαm

∑
n∈Mm

w(m)
n

where Tm is the set of points correctly classified by the choice of ym(x), and Mm those
that are not

E = eαm
N∑

n=1
w(m)

n I (ym (xn) ̸= tn) + e−αm
N∑

n=1
w(m)

n (1− I (ym (xn)

=
(
eαm − e−αm

) N∑
n=1

w(m)
n I (ym (xn) ̸= tn) + e−αm

N∑
n=1

w(m)
n

▶ Since the second term is a constant wrt ym and eαm − e−αm > 0 if αm > 0 best ym
minimizes weighted 0-1 loss.

118 / 126

Choosing αm

▶ So best ym minimizes weighted 0-1 loss .regardless of αm.

▶ How should we set αm given this best ym ?

▶ Recall from above:

E = eαm
N∑

n=1
w(m)

n I (ym (xn) ̸= tn) + e−αm
N∑

n=1
w(m)

n (1− I (ym (xn)

= eαmϵm + e−αm (1− ϵm)

where we define εm to be the weighted error of Ym.

▶ Calculus: αm = 1
2 log

1−ϵm
ϵm

.

119 / 126

AdaBoost: Algorithm Summary
▶ Initialize weights w(1)

n = 1/N
▶ For m = 1, . . . ,M (and while ϵm < 1/2)

▶ Find weak learner ym(x) with minimum weighted error

ϵm =
N∑

n=1
w(m)

n I (ym (xn) ̸= tn)

▶ Set αm = 1
2 log

1−ϵm
ϵm

▶ Update weights w(m+1)
n = w(m)

n exp {−αmtnym (xn)}
▶ Normalize weights to sum to one

▶ Final classifier is

y(x) = sign

(M∑
m=1

αmym(x)
)

120 / 126

AdaBoost behavior

Typical behavior:
▶ Test test error error decreases even after training error is flat (even error zero!)
▶ Tends to not over-fit! 121 / 126

Example: Boosting

▶ Boosting trains a sequence of classifiers, so that later classifiers are trained on data
points that have been misclassified by previous classifiers

▶ Classifier 1 is trained on a random sample of training data
▶ Classifier 2 is trained on a random sample of training data enriched by 50% of data points

misclassified by Classifier 1
▶ Classifier 3 is trained on a random sample of data points from the training data, for which

Classifier 1 and Classifier 2 disagree, i.e., predict different classes

▶ Class of unseen data point is predict based on a majority vote of Classifiers 1, 2, and 3

122 / 126

Example: Boosting

123 / 126

Example: AdaBoost

▶ As we have seen before, AdaBoost, as a popular variant of boosting, trains a sequence
of classifiers.

▶ It increases the weight of data points that have been misclassified by the ensemble
consisting of the already-trained classifiers, i.e., later classifiers learn to correct the
mistakes of earlier ones.

124 / 126

AdaBoost — Example
demo/AdaBoost.py

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract power and weight as data matrix X
X = cars.iloc[:, [3,4]].values

extract origin as target vector y
y = cars.iloc[:, 7].values

split into training data (80%) and test data (20%)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

learn decision tree of maximal depth 2
tree = DecisionTreeClassifier(criterion='entropy', max_depth=2)

bagging classifier based on 10 decision trees
bc = AdaBoostClassifier(base_estimator=tree, n_estimators=30)
bc.fit(X_train, y_train)
bc_y_predicted = bc.predict(X_test)
print(accuracy_score(y_true=y_test, y_pred=bc_y_predicted)) # 0.620253164556962

125 / 126

Summary

▶ Information theory provides a foundation for choosing decision
criteria for nodes in decision trees.

▶ Majority voting, bagging, and boosting as ensemble methods that
aggregate the predictions of multiple classifiers to obtain a more
robust classifier.

126 / 126

