
Data Science and Advanced Programming — Lecture 7
Supervised Machine Learning (Regression)

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

October 27th, 2025 | 12:30 - 16:00 | Internef 263

1 / 87

Today’s Roadmap

1. Supervised Machine Learning — the general idea
2. Linear Regression (1 Variable)
3. Again — Gradient descent
4. Linear Regression (multiple variables)
5. A Probabilistic Interpretation of Linear Regression
6. Polynomial Regression
7. Tuning Model Complexity

The next two notebooks are supposed to be self-study (no pre-recordings)!
8. An Introduction to Pandas (with a Jupyter Notebook) Pandas_intro.ipynb
9. Stock Market Prediction (with “live data”) with Linear regression

see Stock_prediction_ML_Lecture3.ipynb

1 / 87

1. Supervised Machine Learning
Supervised methods assume that training data is available from which they can learn
to predict a target feature based on other features (e.g., fuel consumption of a car as
a function of car power [horse power]).

→ Given data like this, how can we learn to predict the fuel consumption of other cars?
Dataset from this repository.

2 / 87

https://archive.ics.uci.edu/ml/datasets/Auto+MPG

Supervised Machine Learning

▶ x(i) : “input” variables (Horse Power in this example), also called
input features.

▶ y(i) : “output” or target variable that we are trying to predict
(Fuel consumption).

▶ A pair (x(i), y(i)) is called a training example.
▶ The dataset that we’ll be using to learn: a list of m training examples

{(x(i), y(i)); i = 1, . . . ,m}

is called a training set.
▶ Our goal is, given a training set, to learn a function h : X 7→ Y so

that h(x) is a “good” predictor for the corresponding value of y.
▶ For historical reasons, this function h is called a hypothesis.

3 / 87

Classification versus Regression

▶ When the target variable that we’re trying to predict is continuous, such as
in our car example, we call the learning problem a regression problem.

▶ When y can take on only a small number of discrete values (such as if,
given the fuel consumption, we wanted to predict if a car is a SUV or a small
city car), we call it a classification problem.

4 / 87

2. Linear Regression

5 / 87

Model hypothesis and parameters

▶ How can we predict the value of a numerical feature y based on the value of
another numerical feature x?

▶ First, we need to make some assumption about their relationship, i.e., how x
influences y.

ŷ = w0 + w1x
▶ Our model thus assumes that there is a linear relationship between the two

features x and y.

→ How can we determine the coefficients w0 and w1?

6 / 87

Assume a Linear Model

ŷ = w0 + w1x

Dependent Feature/Variable

Coefficient Coefficient

Independent Feature/Variable

▶ Different values of w0 and w1 correspond to
different lines in our plot.

▶ Which ones are best?
▶ Based on the linear equation that we defined

previously, linear regression can be understood as
finding the best-fitting straight line through the
sample points, as shown in the following figure.

7 / 87

Digression: The UCI ML Dataset Repository

https://archive.ics.uci.edu/datasets

8 / 87

https://archive.ics.uci.edu/datasets

Let’s look at the Example Data Set
Example by https://archiveics.uci.edu/ml/datasets/Auto+MPG and K. Beberich (2017)

▶ We determine the values of the coefficients w0 and w1 based on training data that
is available to us.

▶ Our training data consists of n data points

(xi, yi)

▶ in our example those are pairs of power (in hp) and fuel consumption (in mpg) of
individual cars

9 / 87

https://archive ics. uci.edu/ml/datasets/Auto+MPG

Recall: Mean, Variance, Standard Deviation

▶ We define the mean of feature x and y in our training data as

x̄ =
1
n

n∑
i=1

xi ȳ =
1
n

n∑
i=1

yi

▶ Variance of feature x and y in our training data is defined as

σ2
x =

1
n

n∑
i=1

(xi − x̄)2 σ2
y =

1
n

n∑
i=1

(yi − ȳ)2

▶ The values σx and σy are referred to as the standard deviation of features x and y.

10 / 87

Recall: Covariance

▶ Covariance covxy measures the degree of joint variability
between the two features x and y

covx,y =
1
n

n∑
i=1

(xi − x̄) (yi − ȳ)

▶ Large co-variance suggests that the two features vary jointly
▶ a positive value indicates that they tend to deviate from their respective mean in

the same direction
▶ a negative value indicates that they tend to deviate from their respective mean in

opposite directions.

11 / 87

Correlation

▶ The correlation coefficient (also Pearson’s r) is a normalized measure of linear
correlation between the two features x and y

corx,y =

n∑
i=1

(xi − x̄) (yi − ȳ)√√√√ n∑
i=1

(xi − x̄)2

√√√√ n∑
i=1

(yi − ȳ)2

=
covx,y
σxσy

▶ The correlation coefficient takes values in [−1,+1]
▶ a value of -1 indicates a negative linear correlation
▶ a value of 0 indicates that there is no linear correlation
▶ a value of +1 indicates a positive linear correlation

12 / 87

Example Correlations
demo/predict_prices.py

13 / 87

Basic Analytics — Scatter Plot
demo/predict_prices.py

14 / 87

Our Data Set
demo/predict_prices.py

15 / 87

Anscombe’s Quartet
https://en.wikipedia.org/wiki/Wikipedia:Featured_picture_candidates/Anscombe%27s_quartet

All four datasets have the
same mean, variance,
correlation coefficient,
and optimal regression
line.

16 / 87

https://en.wikipedia.org/wiki/Wikipedia:Featured_picture\ _candidates/Anscombe%27s_quartet

Loss function / Cost function

▶ A Loss/Cost function measures how well our model, for a
specific choice of coefficients w0 and w1, describes the training
data

“how much we lose by using the model”
▶ The Residual for data point (xi, yi) measures how much the

observed value yi differs from the prediction of our model

(yi − ŷi) = (yi − (w0 + w1xi)) = (yi − w0 − w1xi)

17 / 87

Loss function / Cost function

▶ Ordinary least squares (OLS) uses the sum of squared residuals
(also: sum of squared errors) as a loss function

L (w0,w1) =
n∑

i=1
(yi − w0 − w1xi)

2

▶ Since we’re interested in finding the coefficients w0 and w1 that
minimize the loss, we obtain the optimization problem

argmin
w0,w1

n∑
i=1

(yi − w0 − w1xi)
2

18 / 87

Minimize the Cost Function

Optimal values for the coefficients w0 and w1 can be determined analytically in the
case of OLS:
▶ compute partial derivatives of loss function w.r.t. w0 and w1

∂L
∂w0

= −2
n∑

i=1
(yi − w0 − w1xi)

∂L
∂w1

= −2
n∑

i=1
(yi − w0 − w1xi) xi

▶ identify common zero by solving system of equations

∂L
∂w0

= 0 ∂L
∂w1

= 0

19 / 87

The optimal coefficients

→ We obtain the following closed-form solutions to compute
optimal values of the coefficients based on our data

w∗
0 =

1
n

n∑
i=1

yi − w∗
1
1
n

n∑
i=1

xi

w∗
1 =

n
∑n

i=1 xiyi − (
∑n

i=1 xi) (
∑n

i=1 yi)

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2

20 / 87

R2: Coefficient of Determination

▶ The R2 coefficient of determination (short: “R squared”)
measures how well the determined regression line approximates
the data.

▶ Put differently: how much of the variation observed in the data
is explained by it.

R2 = 1 −
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2

21 / 87

Linear Regression in Python
demo/predict_prices.py

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import linear_model, metrics

download the original data set -- it has a bunch of NaN's)
#cars = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data',
header=None,
sep='\s+')
Clean data set
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')
Label columns
cars.columns = ['mpg','cylinders','displacement','horsepower','weight','acceleration','model year','origin','car name']
print(cars.head())

Some scatter plots
cols = ['mpg', 'horsepower', 'weight', 'acceleration']
sns.pairplot(cars[cols], size=2.5)
plt.show()

extract the fuel consumption
y = cars.iloc[:,0].values

horsepower
X = cars.iloc[:,[3]].values
print(X.size)

22 / 87

Cont.

Plot
g = sns.regplot(x=X, y=y, fit_reg=False)

Correlation
#cm = np.corrcoef(cars[cols].values.T)
#sns.set(font_scale=1.5)
#hm = sns.heatmap(cm,cbar=True,annot=True,square=True,fmt='.2f',annot_kws={'size': 15},yticklabels=cols,xticklabels=cols)
#print("correlation", cm)

Linear Regression
reg = linear_model.LinearRegression()
reg.fit(X,y)
plt.plot(X, reg.predict(X), color='red')

Labels
plt.xlabel('Power [hp]')
plt.ylabel('Consumption [mpg]')
plt.show()

Coefficients and R2
print('Parameters:')
print('w0: %f'%reg.intercept_)
print('w1: %f'%reg.coef_[0])
print('R2: %f'%metrics.r2_score(y,reg.predict(X)))

23 / 87

Regression Plot

24 / 87

3. Recall – Gradient Descent

▶ Unfortunately, it is not always possible to determine optimal coefficients for a loss
function analytically.

▶ Gradient descent is an optimization algorithm that we can use to determine the
minimum of a loss function.

▶ Basic Idea:
▶ start with a random choice of the coefficients (here: w0 and w1)
▶ repeat for a specified number of rounds or until convergence

▶ compute the gradient for this choice of coefficients
▶ update coefficients based on the gradient

25 / 87

Gradient Descent (II)

Intuition: Think of the loss
function as a surface on which
you want to find the lowest point
▶ start your journey at a

random position
▶ repeat the following

▶ identify direction with steepest
descent

▶ walk a few steps in the identified
direction https://en.wikipedia.org/wiki/

Gradient_descent

26 / 87

https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent

Gradient Descent in Python
demo/gradient_descent.py

The gradient descent algorithm is
applied to find a local minimum of
the function f(x) = x4 − 3x3 + 2
with derivative f′(x) = 4x3 − 9x2.

xk+1 = xk + αkpk.

cur_x = 6 # The algorithm starts at x=6
gamma = 0.01 # step size multiplier
precision = 0.00001
previous_step_size = 1
max_iters = 10000 # maximum number of iterations
iters = 0 #iteration counter

df = lambda x: 4 * x**3 - 9 * x**2

while previous_step_size > precision and iters < max_iters:
prev_x = cur_x
cur_x -= gamma * df(prev_x)
previous_step_size = abs(cur_x - prev_x)
iters+=1

print("The local minimum occurs at", cur_x)
#The output for the above will be:
('The local minimum occurs at', 2.2499646074278457)

27 / 87

The LMS algorithm (least mean square)

Gradient of a multivariate function (e.g., the Loss function J(θ)) is defined as the
vector of its partial derivatives; when evaluated at a specific point, it indicates the
direction of steepest ascent. Specifically, let’s consider the gradient descent algorithm,
which starts with some initial θ, and repeatedly performs the update:

θj := θj − α
∂

∂θj
J(θ).

This update is simultaneously performed for all values of j = 1, . . . , n. Here, α is called
the learning rate (0 < α ≤ 1). This is a very natural algorithm that repeatedly takes a
step in the direction of steepest decrease of J.

28 / 87

The LMS Algorithm (II)

In order to implement this algorithm, we have to work out what is the partial derivative
term on the right hand side. Let’s first work it out for the case of if we have only one
training example (x, y), so that we can neglect the sum in the definition of J. We have:

∂

∂θj
J(θ) = ∂

∂θj

1
2 (hθ(x)− y)2

= 2 · 1
2 (hθ(x)− y) · ∂

∂θj
(hθ(x)− y)

= (hθ(x)− y) · ∂

∂θj

(n∑
i=0

θixi − y
)

= (hθ(x)− y) xj

29 / 87

The LMS Algorithm (III)

▶ For a single training example, this gives the update rule:

θj := θj + α
(

y(i) − hθ
(

x(i)
))

x(i)j .

▶ This rule has several properties that seem natural and intuitive.
▶ For instance, the magnitude of the update is proportional to the error term(

y(i) − hθ

(
x(i)
))

.
▶ Thus, for instance, if we are encountering a training example on which our

prediction nearly matches the actual value of y(i), then we find that there is little
need to change the parameters.

▶ In contrast, a larger change to the parameters will be made if our prediction
hθ
(
x(i)
)

has a large error (i.e., if it is very far from y(i)).

30 / 87

The LMS Algorithm (IV)

▶ This method looks at every example in the entire training set on
every step, and is called batch gradient descent.

▶ Note that, while gradient descent can be susceptible to local
minima in general, the optimization problem we have posed
here for linear regression has only one global, and no other
local, optima.

▶ Thus gradient descent always converges to the global minimum
as J is a convex quadratic function.

31 / 87

Stochastic Gradient Descent (relevant e.g. for Neural
Nets)

▶ Gradient ascent as a counterpart to maximize functions.
▶ Stochastic gradient descent (SGD) does not compute the true

gradient, but approximates the gradient based on a single or
few randomly chosen data points in each round.

▶ Gradient can be approximated when the function at hand is
non-differentiable or when partial derivatives are expensive to
compute.

32 / 87

SGD (II)

In this algorithm, we repeatedly run through the training set, and each time we encounter a training
example, we update the parameters according to the gradient of the error with respect to that single
training example only.
Whereas batch gradient descent has to scan through the entire training set before taking a single
step—a costly operation if m is large—stochastic gradient descent can start making progress right
away, and continues to make progress with each example it looks at.
Often, stochastic gradient descent gets θ “close” to the minimum much faster than batch gradient
descent. (Note however that it may never “converge” to the minimum, and the parameters θ will keep
oscillating around the minimum of J(θ); but in practice most of thevalues near the minimum will be
reasonably good approximations to the true minimum) → particularly when the training set is large,
stochastic gradient descent is often preferred over batch gradient descent.

33 / 87

SGD (II)

In this algorithm, we repeatedly run through the training set, and each time we encounter a training
example, we update the parameters according to the gradient of the error with respect to that single
training example only.
Whereas batch gradient descent has to scan through the entire training set before taking a single
step—a costly operation if m is large—stochastic gradient descent can start making progress right
away, and continues to make progress with each example it looks at.
Often, stochastic gradient descent gets θ “close” to the minimum much faster than batch gradient
descent. (Note however that it may never “converge” to the minimum, and the parameters θ will keep
oscillating around the minimum of J(θ); but in practice most of thevalues near the minimum will be
reasonably good approximations to the true minimum) → particularly when the training set is large,
stochastic gradient descent is often preferred over batch gradient descent.

33 / 87

SGD (II)

In this algorithm, we repeatedly run through the training set, and each time we encounter a training
example, we update the parameters according to the gradient of the error with respect to that single
training example only.
Whereas batch gradient descent has to scan through the entire training set before taking a single
step—a costly operation if m is large—stochastic gradient descent can start making progress right
away, and continues to make progress with each example it looks at.
Often, stochastic gradient descent gets θ “close” to the minimum much faster than batch gradient
descent. (Note however that it may never “converge” to the minimum, and the parameters θ will keep
oscillating around the minimum of J(θ); but in practice most of thevalues near the minimum will be
reasonably good approximations to the true minimum) → particularly when the training set is large,
stochastic gradient descent is often preferred over batch gradient descent.

33 / 87

Gradient Descent in parameter space

34 / 87

Loss Optimization

35 / 87

Loss Optimization

36 / 87

Loss Optimization
Take a small step in the opposite direction of the gradient.

37 / 87

Loss Optimization

Repeat until convergence

38 / 87

Mini Batch Gradient Descent

▶ In actual practice we use an approach called Mini batch gradient descent.
▶ This approach uses random samples but in batches.
▶ What this means is that we do not calculate the gradients for each

observation but for a group of observations which results in a faster
optimization.

▶ A simple way to implement is to shuffle the observations and then create
batches and then proceed with gradient descent using batches.

39 / 87

Let’s run the Jupyter Notebook

demo/GradientDescent_StochasticGradientDescent.ipynb

40 / 87

4. Regression with multiple variables

▶ How can we predict the value of a numerical feature y based on multiple other
numerical features x1, . . . , xm ?

▶ We assume that there is a linear relationship between the target feature and the
other features

ŷ = w0 + w1x1 + . . .+ wmxm

▶ Given that we now deal with multiple data points and multiple features, it is
easier to formulate our optimization problem using matrices and vectors.

41 / 87

Minimize the Cost Function
The training examples’ input values in its rows. Also, let y⃗ be the m-dimensional vector
containing all the target values from the training set:

X =


−
(
x(1)
)T −

−
(
x(2)
)T −

...
−
(
x(m)

)T −

 y⃗ =


y(1)
y(2)

...
y(m)


Now, since hθ

(
x(i)
)
=
(
x(i)
)⊤

θ (where θ is the vector of coefficients), we can easily verify that

Xθ − y⃗ =


(
x(1)
)T

θ
...(

x(m)
)T

θ

−

 y(1)
...

y(m)

 =

 hθ

(
x(1)
)
− y(1)

...
hθ

(
x(m)

)
− y(m)



42 / 87

Minimize the Cost Function
Thus, using the fact that for a vector z, we have that zTz =

∑
i z2

i :

1
2 (Xθ − y⃗)T(Xθ − y⃗) = 1

2

m∑
i=1

(
hθ

(
x(i)
)
− y(i)

)2

∇θL(Θ) = ∇θ
1
2 (Xθ − y⃗)T(Xθ − y⃗)

=
1
2∇0

(
θTXTXθ − θTXTy⃗ − y⃗TXθ + y⃗Ty⃗

)
=

1
2∇θ tr

(
θTXTXθ − θTXTy⃗ − y⃗TXθ + y⃗Ty⃗

)
=

1
2∇θ

(
tr θTXTXθ − 2 tr y⃗TXθ

)
=

1
2
(
XTXθ + XTXθ − 2XTy⃗

)
= XTXθ − XTy⃗

43 / 87

Minimize the Cost Function (III)

To minimize J, we set its derivatives to zero, and obtain the
normal equations:

XTXθ = XTy⃗
Thus, the value of θ that minimizes L(θ) is given in closed form by
the equation

θ =
(
XTX

)−1 XTy⃗

44 / 87

Multivariate Linear Regression in Python
demo/multi_par_reg.py
https://archive.ics.uci.edu/dataset/9/auto+mpg

Let’s apply this to our car
dataset and try to predict
fuel consumption based
on horsepower and
weight.

import pandas as pd
import numpy as np
from sklearn import linear_model
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

read cars dataset, a clean data set
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract mpg values
y = cars.iloc[:,0].values

extract horsepower and weight values
X = cars.iloc[:,[3,4]].values

fit linear regression model
reg = linear_model.LinearRegression()
reg.fit(X,y)

coefficients
reg.intercept_ # 45.640210840177119
reg.coef_ # [-0.04730286 -0.00579416] 45 / 87

https://archive.ics.uci.edu/dataset/9/auto+mpg

Multivariate Linear Regression in Python

compute correlation coefficient
np.corrcoef(reg.predict(X),y) # 0.84046135

compute mean squared error (MSE)
sum((reg.predict(X) - y)**2) / len(y) # 17.841442442550584

Here, the last line computes the mean squared error (MSE) as another widely used
measure for assessing the prediction quality of a regression model.

MSE =
1
n

n∑
i=1

(yi − ŷi)
2

46 / 87

Inspect the regression — Hyperplane

Plot the hyperplane
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

plot data points
for i in range(0,len(y)):

ax.scatter(X[i,0], X[i,1], y[i],
color='blue',
marker='x')

plot hyperplane
X0 = np.arange(min(X[:,0]), max(X[:,0]), 25)
X1 = np.arange(min(X[:,1]), max(X[:,1]), 25)
X0, X1 = np.meshgrid(X0, X1)
Z = X0.copy()
n = X0.shape[0]
m = X0.shape[1]
for i in range(0, n):

for j in range(0, m):
Z[i,j] = reg.predict([[X0[i,j], X1[i,j]]])

ax.plot_surface(X0, X1, Z, color='red',
linewidth=0,
antialiased=False)

ax.set_xlabel('Power [hp]')
ax.set_ylabel('Weight [lbs]')
ax.set_zlabel('Fuel consumption [miles/gallon]')
plt.show()

47 / 87

Handling non-numerical Features

▶ How can we make non-numerical (i.e., nominal and ordinal) features accessible
to regression analysis?

▶ Nominal features (e.g., origin of a car) can be converted using one-hot
encoding: for each value of the original feature, a binary feature is introduced,
indicating whether a data point has the corresponding value for the feature.

48 / 87

Handling non-numerical Features

▶ Ordinal features (e.g., energy efficiency class) can be mapped to integer values
preserving their order.

▶ Note that this mapping implicitly assumes that the differences between adjacent
values are uniform, i.e., have the same magnitude.

49 / 87

Predict Miles/Gallon with Origin as Feature
demo/multi_par_reg_add_features.py

import pandas as pd
import numpy as np
from sklearn import linear_model, preprocessing

read cars dataset, a clean data set
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

extract mpg values
y = cars.iloc[:,0].values

extract horsepower and weight values, apply one-hot encoding for origin
X = pd.concat([cars.iloc[:,[3,4]], pd.get_dummies(cars[7])], axis = 1).values

fit linear regression model
reg = linear_model.LinearRegression()
reg.fit(X,y)

coefficients
reg.intercept_ # 43.974410233714622
reg.coef_ # [-0.05354417, -0.00484275, -1.2344519 , -0.27333471, 1.50778661]

50 / 87

Predict Miles/Gallon with Origin as Feature

compute correlation coefficient
np.corrcoef(reg.predict(X),y) # 0.84810338
compute mean squared error (MSE)
sum((reg.predict(X) - y)**2) / len(y) # 17.057355871889044

→ Origin as an additional features reduces mean squared error and allows the model to
encode knowledge about fuel efficiency of cars from different origins (U.S.A. least
efficient, Japan most efficient).

51 / 87

5. A Probabilistic Interpretation of Linear Regression

▶ When faced with a regression problem,
why might linear regression, and
specifically why might the
least-squares cost function J, be a
reasonable choice?

▶ → We look now at a set of
probabilistic assumptions, under which
least-squares regression is derived as a
very natural algorithm.

Let us assume that the target variables and the inputs are related via the equation

y(i) = θTx(i) + ϵ(i)

where ε(i) is an error term that captures for instance random noise.

52 / 87

Probability and Regression

Let us further assume that the ε(0) are distributed i.i.d (independently and identically
distributed) according to a Gaussian distribution with mean zero and some variance
σ2. We can write this assumption as

ε(1) ∼ N
(
0, σ2) .

i.e., the density of ε(0) is given by

p
(
ϵ(i)
)
=

1√
2πσ

exp

(
−
(
ϵ(i)
)2

2σ2

)

53 / 87

Probability and Regression (II)

▶ This implies that

p
(

y(i) | x(i); θ
)
=

1√
2πσ

exp

(
−
(
y(i) − θTx(i)

)2

2σ2

)

▶ The notation “ p
(
y(i) | x(i); θ

)
” indicates that this is the distribution of y(i) given

x(i) and parameterized by θ.
▶ Note that we should not condition on θ (“ p

(
y(i) | x(i), θ

)
”), since θ is not a

random variable.
▶ We can also write the distribution of y(i) as y(i) | x(i); θ ∼ N

(
θ⊤x(i), σ2).

54 / 87

Likelihood Function

▶ Given X (the design matrix, which contains all the X(i)s) and θ, what is the
distribution of the y(i)’s?

▶ The probability of the data is given by p(⃗y | X; θ) This quantity is typically viewed
a function of y⃗ (and perhaps X), for a fixed value of θ.

▶ When we wish to explicitly view this as a function of θ, we will instead call it the
likelihood function:

L(θ) = L(θ;X, y⃗) = p(⃗y | X; θ)

55 / 87

Likelihood Function (II)

Note that by the independence assumption on the ε(i) ’s (and hence also the y(i) ’s
given the x(i) ’s), this can also be written

L(θ) =
m∏

i=1
p
(

y(i) | x(i); θ
)

=
m∏

i=1

1√
2πσ

exp

(
−
(
y(i) − θTx(i)

)2

2σ2

)
.

56 / 87

Likelihood Function (III)

▶ Now, given this probabilistic model relating
the y(i)’s and the x(i)’s, what is a reasonable
way of choosing our best guess of the
parameters θ ?

▶ The principle of maximum likelihood says
that we should choose θ so as to make the
data as high probability as possible — that is,
we should choose θ to maximize L(θ).

▶ Instead of maximizing L(θ), we can also
maximize any strictly increasing function of
L(θ). In particular, the derivations will be a
bit simpler if we instead maximize the log
likelihood I(θ) :

ℓ(θ) = log L(θ)

= log
m∏

i=1

1√
2πσ

exp

−

(
y(i) − θTx(i)

)2

2σ2


=

m∑
i=1

log
1√
2πσ

exp

−

(
y(i) − θTx(i)

)2

2σ2


= m log

1√
2πσ

− 1
σ2 · 1

2

m∑
i=1

(
y(i) − θTx(i)

)2
.

57 / 87

Maximum Likelihood

▶ Hence, maximizing I(θ) gives the same answer as minimizing

1
2

m∑
i=1

(
y(i) − θTx(i)

)2
,

which we recognize to be J(θ), our original least-squares cost function.
▶ Under the previous probabilistic assumptions on the data, least-squares regression

corresponds to finding the maximum likelihood estimate of θ.
▶ This is thus one set of assumptions under which least-squares regression can be

justified as a very natural method that’s just doing maximum likelihood
estimation.

58 / 87

Newton’s Method — another way of maximizing
functions

▶ Let’s now talk about a different algorithm for maximizing e.g.ℓ(θ).
▶ Let’s consider Newton’s method for finding a zero of a function.
▶ Suppose we have some function f : R → R, and we wish to find a value of θ such

that f(θ) = 0. Here, θ is a real number.
▶ Newton’s method performs the following update:

θ := θ − f(θ)
f′(θ)

59 / 87

Newton’s Method

Newton’s method has a natural
interpretation. We can think of it as
approximating the function f via a linear
function that is tangent to f at the current
guess θ, solving for where that linear
function equals to zero, and letting the
next guess for θ be where that linear
function is zero.

https://en.wikibooks.org/wiki/Calculus/
Newton%27s_Method

60 / 87

https://en.wikibooks.org/wiki/Calculus/Newton%27s_Method
https://en.wikibooks.org/wiki/Calculus/Newton%27s_Method

Newton’s Method (II)

▶ Newton’s method gives a way of getting to f(θ) = 0.
▶ What if we want to use it to maximize some function ℓ? The maximum of I

correspond to points where its first derivative ℓ′(θ) is zero.
▶ So, by letting f(θ) = ℓ′(θ), we can use the same algorithm to maximize ℓ, and we

obtain update rule:
θ := θ − ℓ′(θ)

ℓ′′(θ)

61 / 87

Newton’s Method for multiple variables
▶ The generalization of Newton’s method to a multidimensional setting (also called

the Newton-Raphson method) is given by

θ := θ − H−1∇θℓ(θ).

▶ Here, ∇θℓ(θ) is, as usual, the vector of partial derivatives of ℓ(θ) with respect to
the θi ’s; and H is an n-by-n matrix (actually, n + 1-by- n + 1, assuming that we
include the intercept term) called the Hessian, whose entries are given by

Hij =
∂2ℓ(θ)

∂θi∂θj
.

▶ Newton’s method typically enjoys faster convergence than gradient descent, and
requires fewer iterations to get very close to the minimum. One iteration of
Newton’s can, however, be more expensive than one iteration of gradient descent,
since it requires finding and inverting an n-by-n Hessian; but so long as n is not
too large, it is usually much faster overall.

62 / 87

Newton’s Method: Pros and Cons
▶ When it converges, Newton’s method usually converges very quickly and this is its main

advantage. However, Newton’s method is not guaranteed to converge and this is
obviously a big disadvantage especially compared to the bisection and secant methods
which are guaranteed to converge to a solution (provided they start with an interval
containing a root).

▶ Newton’s method also requires computing values of the derivative of the function in
question. This is potentially a disadvantage if the derivative is difficult to compute.

▶ The stopping criteria for Newton’s method differs from the bisection and secant methods.
In those methods, we know how close we are to a solution because we are computing
intervals which contain a solution. In Newton’s method, we don’t know how close we are
to a solution. All we can compute is the value f(x) and so we implement a stopping
criteria based on f(x).

▶ Finally, there’s no guarantee that the method converges to a solution and we should set a
maximum number of iterations so that our implementation ends if we don’t find a
solution.

63 / 87

Newton’s Method: Pros and Cons
▶ When it converges, Newton’s method usually converges very quickly and this is its main

advantage. However, Newton’s method is not guaranteed to converge and this is
obviously a big disadvantage especially compared to the bisection and secant methods
which are guaranteed to converge to a solution (provided they start with an interval
containing a root).

▶ Newton’s method also requires computing values of the derivative of the function in
question. This is potentially a disadvantage if the derivative is difficult to compute.

▶ The stopping criteria for Newton’s method differs from the bisection and secant methods.
In those methods, we know how close we are to a solution because we are computing
intervals which contain a solution. In Newton’s method, we don’t know how close we are
to a solution. All we can compute is the value f(x) and so we implement a stopping
criteria based on f(x).

▶ Finally, there’s no guarantee that the method converges to a solution and we should set a
maximum number of iterations so that our implementation ends if we don’t find a
solution.

63 / 87

Newton’s Method: Pros and Cons
▶ When it converges, Newton’s method usually converges very quickly and this is its main

advantage. However, Newton’s method is not guaranteed to converge and this is
obviously a big disadvantage especially compared to the bisection and secant methods
which are guaranteed to converge to a solution (provided they start with an interval
containing a root).

▶ Newton’s method also requires computing values of the derivative of the function in
question. This is potentially a disadvantage if the derivative is difficult to compute.

▶ The stopping criteria for Newton’s method differs from the bisection and secant methods.
In those methods, we know how close we are to a solution because we are computing
intervals which contain a solution. In Newton’s method, we don’t know how close we are
to a solution. All we can compute is the value f(x) and so we implement a stopping
criteria based on f(x).

▶ Finally, there’s no guarantee that the method converges to a solution and we should set a
maximum number of iterations so that our implementation ends if we don’t find a
solution.

63 / 87

Newton’s Method: Pros and Cons
▶ When it converges, Newton’s method usually converges very quickly and this is its main

advantage. However, Newton’s method is not guaranteed to converge and this is
obviously a big disadvantage especially compared to the bisection and secant methods
which are guaranteed to converge to a solution (provided they start with an interval
containing a root).

▶ Newton’s method also requires computing values of the derivative of the function in
question. This is potentially a disadvantage if the derivative is difficult to compute.

▶ The stopping criteria for Newton’s method differs from the bisection and secant methods.
In those methods, we know how close we are to a solution because we are computing
intervals which contain a solution. In Newton’s method, we don’t know how close we are
to a solution. All we can compute is the value f(x) and so we implement a stopping
criteria based on f(x).

▶ Finally, there’s no guarantee that the method converges to a solution and we should set a
maximum number of iterations so that our implementation ends if we don’t find a
solution.

63 / 87

Newton’s Method: Example

▶ Let’s write a function called newton which takes 5 input parameters: f, Df, x0,
epsilon and max_iter and returns an approximation of a solution of f(x) by
Newton’s method. The function may terminate in 3 ways:

▶ If abs (f (xn)) < epsilon , the algorithm has found an approximate solution and
returns xn.

▶ If f′ (xn) == 0, the algorithm stops and returns None.
▶ If the number of iterations exceed max_iter, the algorithm stops and returns

None.

64 / 87

Example Code
demo/newton_test.py and demo/newton_solver.py

def newton(f,Df,x0,epsilon,max_iter):
'''Approximate solution of f(x)=0 by Newton's method.

Parameters

f : function

Function for which we are searching for a solution f(x)=0.
Df : function

Derivative of f(x).
x0 : number

Initial guess for a solution f(x)=0.
epsilon : number

Stopping criteria is abs(f(x)) < epsilon.
max_iter : integer

Maximum number of iterations of Newton's method.

Returns

xn : number

Implement Newton's method: compute the linear approximation
of f(x) at xn and find x intercept by the formula

x = xn - f(xn)/Df(xn)
Continue until abs(f(xn)) < epsilon and return xn.
If Df(xn) == 0, return None. If the number of iterations
exceeds max_iter, then return None.

'''

65 / 87

Example Code — Cont.

'''
Examples

>>> f = lambda x: x**2 - x - 1
>>> Df = lambda x: 2*x - 1
>>> newton(f,Df,1,1e-8,10)
Found solution after 5 iterations.
1.618033988749989
'''

xn = x0
for n in range(0,max_iter):

fxn = f(xn)
if abs(fxn) < epsilon:

print('Found solution after',n,'iterations.')
return xn

Dfxn = Df(xn)
if Dfxn == 0:

print('Zero derivative. No solution found.')
return None

xn = xn - fxn/Dfxn
print('Exceeded maximum iterations. No solution found.')
return None

66 / 87

Newton Solver — test 1

f = lambda x: x**3 - x**2 - 1
Df = lambda x: 3*x**2 - 2*x
approx = newton(f,Df,1.5,1e-10,10)

67 / 87

Newton solver – divergent example

f = lambda x: x**(1/3)
Df = lambda x: (1/3)*x**(-2/3)
approx = newton(f,Df,0.5,1e-2,100)

68 / 87

6. Polynomial Regression

▶ What if the relationship between our target feature y and the independent
features is “more complicated”?

▶ Polynomial regression allows us to estimate the optimal coefficients of a
polynomial having degree d

hθ = w0 + w1x + w2x2 + . . .+ wdxd

▶ To estimate the coefficients wi, we can pre-compute the values xi and treat them
just like other numerical features - no other changes are required!

▶ Minimize again the cost function

1
2

m∑
i=1

(
hθ
(

x(i)
)
− y(i)

)2

69 / 87

Polynomial Regression in Python
demo/poly_reg.py

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model, preprocessing

read cars dataset, a clean data set
cars = pd.read_csv('auto-mpg.data.txt',

header=None, sep='\s+')

extract mpg values
y = cars.iloc[:,0].values

extract horsepower values
X = cars.iloc[:,[3]].values
X = X.reshape(X.size, 1)

precompute polynomial features
poly = preprocessing.PolynomialFeatures(2)
Xp = poly.fit_transform(X)

fit linear regression model
reg = linear_model.LinearRegression()
reg.fit(Xp,y)

coefficients
reg.intercept_ # 56.900099702112925
reg.coef_ # [-0.46618963, 0.00123054]

compute correlation coefficient
np.corrcoef(reg.predict(Xp),y) # 0.82919179 (from 0.77842678)

compute mean squared error (MSE)
sum((reg.predict(Xp) - y)**2) / len(y)
18.984768907617223 (from 23.943662938603104)

plot

hp = cars.iloc[:,3].values
mpg = cars.iloc[:,0].values

hps = np.array(sorted(hp))
hps = hps.reshape(hps.size, 1)
hpsp = poly.fit_transform(hps)

plt.scatter(hp, mpg, color='blue', marker='x')
plt.plot(hps, reg.predict(hpsp), color='red', lw=2)
plt.xlabel('Power [hp]')
plt.ylabel('Fuel consumption [miles/gallon]')
plt.show()

70 / 87

A Much Better Prediction

71 / 87

Polynomial regression & Probability
See Bishop (2006), Chapter 3 for more details.

▶ As before, we assume that the target variable
t is given by a deterministic function y(x,w)
with additive Gaussian noise:

t = y(x,w) + ϵ

where the noise is a zero mean Gaussian
random variable with precision (inverse
variance) β. Thus we can write

p(t | x,w, β) = N
(
t | y(x,w), β−1) .

▶ → to determine the parameters, maximize
again the likelihood.

72 / 87

7. Tuning Model Complexity

▶ Plot of a training data set of N = 10
points, shown as blue circles, each
comprising an observation of the input
variable x along with the
corresponding target variable t.

▶ The green curve shows the function
sin(2πx) used to generate the data.

▶ → Our goal is to predict the value of t
for some new value of x, without
knowledge of the green curve.

See Bishop (2006), Chapter 1 and 3 for
more details.

73 / 87

Overfitting

Polynomial Curve Fitting of polynomials having various orders M, shown as red curves, fitted to the
data set shown above.

74 / 87

Overfitting (II)

▶ So far, we’ve assessed the prediction quality of our model based on the same
data that we used for training.

▶ This is a very bad idea, since we can not accuratelymeasure how well our
model works for previously unseen data points (e.g., for cars not in our
dataset)

▶ Our model may over-fit to the training data and loose its ability to make
predictions.

→ Next, we’ll see some best practices for evaluating machine learning models

75 / 87

Overfitting (III)

▶ Overfitting occurs when our model describes the training data very accurately, but
fails to make predictions for previously unseen data points.

▶ When the number of features is large in comparison to the number of data points
available for training, over-fitting is likely to occur.

▶ In that case, we learn a model that uses many features, and is thus more complex,
but fails to generalize.

76 / 87

Occam’s Razor

▶ Occam’s razor is a logical principle attributed to the medieval philosopher William
of Occam (or Ockham).

▶ The principle states that one should not make more assumptions than the
minimum needed. This principle is often called the principle of parsimony.

▶ It underlies all scientific modeling and theory building. It admonishes us to
choose from a set of otherwise equivalent models of a given phenomenon
the simplest one.

▶ In any given model, Occam’s razor helps us to “shave off” those concepts,
variables or constructs that are not really needed to explain the phenomenon.

▶ By doing that, developing the model will become much easier, and there is less
chance of introducing inconsistencies, ambiguities and redundancies.

77 / 87

How to Avoid Overfitting

▶ To avoid over-fitting, it is good practice to assess the quality of a model based on
test data that must not be used for training the model.

▶ The key idea is to split the available data (randomly) into training, validation, and
test data.

78 / 87

Splitting the Data

One common approach to reliably assess the quality of a machine learning model and
avoid over-fitting is to randomly split the available data into
▶ training data (∼ 70% of the data) used for determining optimal coefficients.
▶ validation data (20% of the data) used for model selection (e.g., fixing

degree of polynomial, selecting a subset of features, etc.)
▶ test data (10% of the data) used to measure the quality that is reported.

79 / 87

Model Selection: k-Fold Cross Validation

demo/k-fold_cross_validation.py

▶ Another common approach, especially suitable when
only limited data is available, is k-fold
cross-validation.

▶ Data is (randomly) split into k folds of (about) equal
size.

▶ k rounds of training and validation are performed, in
which
▶ (k-1) folds serve as training data
▶ one fold serves as validation/test data

In the end the mean of the quality measure (e.g., MSE) is reported as an
estimate of the overall quality.

80 / 87

Cross-validation in Python
demo/k-fold_cross_validation.py

import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn import linear_model,
metrics, preprocessing, metrics, model_selection

Clean data set
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

Label columns
cars.columns = ['mpg','cylinders',

'displacement','horsepower',
'weight','acceleration','model year',
'origin','car name']

print (cars.head())

Some scatter plots
cols = ['mpg', 'horsepower', 'weight', 'acceleration']
sns.pairplot(cars[cols], size=2.5)
#plt.show()
extract the fuel consumption
y = cars.iloc[:,0].values

horsepower
X = cars.iloc[:,[3]].values
Compute Polynomial Features (e.g., horsepower^2)
poly = preprocessing.PolynomialFeatures(2)
X= poly.fit_transform(X)

#5-fold Cross-validation
kf = model_selection.KFold(n_splits=5, shuffle=True)
mses = []
for train_index, test_index in kf.split(X):

#Split into training and test data
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]

#Linear regression
reg = linear_model.LinearRegression()
reg.fit(X_train,y_train)

#Print Parameters
print("Parameter: ")
print('w0: %f' %reg.intercept_)
print('w1: %f' %reg.coef_[0])
print('w2: %f' %reg.coef_[1])

MSE
mse = sum((y_test - reg.predict(X_test))**2.0)/len(y_test)
print("MSE: %f" %mse)
mses.append(mse)

print("MSE (Average): %f" %(sum(mses)/len(mses)))

81 / 87

Regularization — Ridge Regression

One technique that is often used to control the over-fitting phenomenon in such cases
is that of regularization, which involves adding a penalty term to the error
function in order to discourage the coefficients from reaching large values.
The simplest such penalty term takes the form of a sum of squares of all of the
coefficients, leading to a modified error function of the form

1
2

N∑
n=1

{y (xn,w)− tn}2 +
λ

2 ‖w‖2 Ridge Regression

where ‖w‖2 ≡ wTw = w2
0 + w2

1 + . . .+ w2
M andthe coefficient λ governs the relative

importance of the regularization term compared with the sumof-squares error term.

82 / 87

Ridge Regression in Python
demo/ridge_regression.py

We consider our car
dataset and learn
coefficients for polynomial
ridge regression with
degree 5 based on a
subset of 10 randomly
chosen cars.

import pandas as pd
import numpy as np
from sklearn import linear_model, preprocessing
import matplotlib.pyplot as plt
import random

read cars dataset, a clean data set
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

random sample of 20 cars
sample = random.sample(range(0,len(cars)), 10)
out_of_sample = list(set(range(0,len(cars))) - set(sample))

extract mpg values for cars in sample
y = cars.iloc[sample, 0].values
y_oos = cars.iloc[out_of_sample, 0].values

extract horsepower values for cars in sample
X = cars.iloc[sample, [3]].values
X.reshape(X.size, 1)

precompute polynomial features for degree 5
poly = preprocessing.PolynomialFeatures(5)
Xp = poly.fit_transform(X)

83 / 87

Cont.

for lmbd in [0.0, 0.0001, 0.0001, 0.001, 0.01, 0.1, 1.0, 10.0]:
fit linear regression model

reg = linear_model.Ridge(alpha=lmbd, normalize=True)
reg.fit(Xp,y)
plot fitted function
hp = cars.iloc[:,3].values
mpg = cars.iloc[:,0].values
hps = np.array(sorted(hp))
hps = hps.reshape(hps.size, 1)
hpsp = poly.fit_transform(hps)
plt.title("lambda: " + str(lmbd))
plt.scatter(hp, mpg, color='gray', marker='x')
plt.scatter(X, y, color='blue', marker='o')
plt.plot(hps, reg.predict(hpsp), color='red', lw=2)
plt.xlabel('Power [hp]')
plt.ylabel('Fuel consumption [miles/gallon]')
plt.xlim([min(hp), max(hp)])
plt.ylim([min(mpg), max(mpg)])
plt.show()

84 / 87

Ridge Regression in Python

85 / 87

Regularization in General
▶ A more general regularizer is sometimes used, for which the regularized error takes

the form
1
2

N∑
n=1

{
tn − wTϕ (xn)

}2
+

λ

2

M∑
j=1

|wj|q

▶ The case of q = 1 is known as the LASSO in the statistics literature. It has the
property that if λ is sufficiently large, some of the coefficients wj are driven to
zero, leading to a sparse model in which the corresponding basis functions play no
role.

Contours of the regularization term in in above’s equation for various values of the parameter q.

86 / 87

Some Literature for this lecture

Python Machine Learning
S. Raschka
PACKT Publishing, 2017
Pattern Recognition and Machine
Learning
C.M. Bishop
Springer, 2006

87 / 87

