
Data Science and Advanced Programming — Lecture 6c
Object Oriented Programming

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

October 20th, 2025 | 10:15 - 14:00 | Anthropole 2106

1 / 110

1. Python Classes and Inheritance

1 / 110

Implementing the Class vs using the Class

Write code from two different perspectives:

▶ implementing a new object type with
a class
▶ define the class
▶ define data attributes (WHAT IS

the object)
▶ define methods (HOW TO use the

object)

▶ using the new object type in Code
▶ create instances of the object type
▶ do operations with them

2 / 110

Class definition of an object type versus instance of a
class

▶ Class name is the type:
class Coordinate(object)

▶ Class is defined generically
▶ use self to refer to some instance

while defining the class
(self.x - self.y)**2

▶ self is a parameter to methods in the
class definition.

▶ class defines data and methods
common across all instances.

▶ instance is one specific object
coord = Coordinate(1,2)

▶ Data attribute values may vary
between instances
c1 = Coordinate(1,2)
c2 = Coordinate(3,4)
▶ c1 and c2 can have different data

attribute values c1.x and c2.x
because they are different objects.

▶ Instance has the structure of the
class.

3 / 110

Why should we use OOP and classes of objects?
▶ mimic real life
▶ group different objects part of the same type (e.g. car: age, name).

4 / 110

Why should we use OOP and classes of objects?
▶ mimic real life
▶ group different objects part of the same type (e.g. car: age, name).

4 / 110

Recall: Groups of Objects have attributes

▶ data attributes
▶ how can you represent your object with data?
▶ what it is
▶ for a coordinate: x and y values
▶ for a car : e.g. age, name

▶ procedural attributes (behavior/operations/methods)
▶ how can someone interact with the object?
▶ what it does/what can your object do?
▶ for a coordinate: find distance between two
▶ for a car: make a sound (horn)

5 / 110

Recall: How to define a class

6 / 110

Getter” and “Setter” Methods
demo/example4.py

▶ getters and setters should be used outside of class to access data attributes.
▶ Implementing getters and setters help to prevent from introducing bugs.

7 / 110

Recall: An instance — not notation

▶ Instantiation creates an instance of an object
a = machine(3)

▶ Dot notation used to access attributes (data and methods)
though it is better to use getters and setters to access data
attributes

▶ a.age
▶ → access data attribute
▶ → allowed, but not recommended

▶ a.get_age()
▶ → access method
▶ → best to use getters and setters

8 / 110

Information hiding
▶ Author of class definition may change data attribute variable names

▶ If you are accessing data attributes outside the class and class definition changes,
may get errors

▶ outside of class, use getters and setters instead use a.get_age() NOT a.age
▶ good style
▶ easy to maintain code
▶ prevents bugs

9 / 110

Python: Not so good at information hiding

▶ Allows you to access data from outside class definition
print(a.age)

▶ Allows you to write to data from outside class definition
(int ↔ str) a.age = 'infinite'

▶ Allows you to create data attributes for an instance from outside class definition
(e.g., size)
a.size = "tiny"

→ It’s not good style to do any of these!

10 / 110

Default arguments

▶ Default arguments for formal parameters are used if no actual argument is given

def set_name(self, newname=""):
self.name = newname

▶ Default argument used here

a = machine(3)
a.set_name()
print(a.get_name())

▶ Prints “ ”

▶ argument passed in is used here

a = machine(3)
a.set_name("airbus")
print(a.get_name())

▶ Prints “airbus”

11 / 110

Hierarchies

Consider everything on this picture as an Object!
▶ Every Creature has an age
▶ Fish and Humans are Creatures. Humans have different (data) attributes than

Fish.
▶ Shark builds on Object Fish.
▶ Student builds on Object Human. (Student is Creature, is human, has an age,

and Major field of study...)
▶ Idea of HIERARCHY.
▶ Add functionality to each of those “subgroups”

12 / 110

Hierarchies

▶ parent class (superclass)
▶ child class (subclass)

▶ inherits all data and methods/
behaviors of parent class.

▶ add more info.
▶ add more behavior. (e.g. student

study, while sharks do not)
▶ override behavior. (e.g. person can

speak, but say only “hello”, while a
student can say “hi dude” →
override “speak” function)

Creatures

Humans Fish

Student Shark

13 / 110

Example of inheritance: Parent class
demo/example5.py

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

▶ everything is an object
▶ class object implements basic

operations in Python, such as binding
variables, etc.

14 / 110

Inheritance: Subclass “Cat”
demo/example5.py

▶ add new method/functionality with speak().
▶ instance of type cat can be called with new methods.
▶ instance of type Animal throws error if called with Animal’s new method.
▶ __init__ is not missing, uses the Animal version.

15 / 110

Which method to use

▶ Subclass can have methods with same name as superclass.
▶ For an instance of a class, look for a method name in current class definition.
▶ If not found, look for method name up the hierarchy (in parent, then

grandparent, and so on).
▶ Use first method up the hierarchy that you found with that method name.

16 / 110

Example of inheritance: Parent class
demo/example5.py

class Animal(object):
def __init__(self, age):

self.age = age
self.name = None

def get_age(self):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.name = newname

def __str__(self):
return "animal:"+str(self.name)+":"+str(self.age)

17 / 110

Example of Inheritance — Person
demo/example6.py

18 / 110

Example of Inheritance — Student (Subclass of
Person, i.e., sub-subclass of Animal)
demo/example7.py

19 / 110

Class Variables
demo/example8.py

▶ class variables and their values are shared between all instances of a class

▶ Tag used to give unique ID to each new rabbit instance

20 / 110

Rabbit “Getter” methods
demo/example8.py

21 / 110

Working with your own types
▶ define + operator between two Rabbit instances

▶ define what something like this does: r4= r1+r2 where r1 and r2 are Rabbit
instances.

▶ r4 is a new Rabbit instance with age 0
▶ r4 has self as one parent and other as the other parent
▶ in __init__, parent1 and parent2 are of type Rabbit

22 / 110

Special Method to Compare two Rabbits
▶ Decide that two rabbits are equal if they have the same two parents.

▶ Compare IDs of parents since IDs are unique (due to class var)
▶ note you can’t compare objects directly

▶ for ex. with self.parent1 == other.parent1
▶ this calls the __eq__ method over and over until call it on None and gives an

AttributeError when it tries to do None.parent1

23 / 110

Object-oriented Programming

▶ Create your own collections of data.
▶ Organize information.
▶ Division of work.
▶ Access information in a consistent manner.
▶ Add layers of complexity.
▶ Like functions, classes are a mechanism for decomposition and abstraction in

programming.

24 / 110

2. Program Efficiency

▶ Measuring orders of growth of algorithms.
▶ Big “O” notation.
▶ Complexity classes.

25 / 110

“We are drowning in information and starving for
knowledge.”

— John Naisbitt

26 / 110

Big Data and its availability
https://ourworldindata.org/internet

27 / 110

https://ourworldindata.org/internet

Big Data and its availability
http://www.live-counter.com/how-big-is-the-internet

Size of the internet as we speak: TBD Petabytes
▶ 1 Gigabyte ∼ 1000 MB
▶ 1 Terabyte ∼ 1000 GB
▶ 1 Petabyte ∼ 1000 TB
▶ 1 Exabyte ∼ 1000 PB
▶ 1 Zettabyte ∼ 1000 EB

1 Gigabyte: If an author writes a book of about 190 pages, more specifically, of
383,561 characters (with spaces and punctuation included) every week for 50 years —
this would be a billion letters or bytes.
1 Exabyte: 212 million DVDs weighing 3,404 tons.
1 Zettabyte: 1,000,000,000,000,000,000,000 bytes or characters.
This, printed on graph paper (with one letter in each mm2 square) would be a paper
measuring a billion km. The entire surface of the Earth (510 million km2) would be
covered by a layer of paper almost twice.

28 / 110

http://www.live-counter. com/how-big-is-the-internet

Other sources of Big Data

▶ Scientific experiments
▶ CERN (e.g., LHC) generates ∼

25 petabytes per year (2012).
▶ LIGO generates ∼ 1 Petabyte

per year
▶ Numerical computations
▶ …

https://www.olcf.ornl.gov/summit/

https://home.cern/

https://www.ligo.
caltech.edu/

29 / 110

https://www.olcf.ornl.gov/summit/
https://home.cern/
https://www.ligo.caltech.edu/
https://www.ligo.caltech.edu/

Efficiency of Programs

▶ Computers getting faster and faster — so maybe efficient programs don’t matter?
▶ But data sets can be very large (growing exponentially, and faster than computer

power)
▶ Thus, simple solutions may simply not scale with size in acceptable manner.
▶ How can we decide which option for program is most efficient?

▶ → Algorithmic Complexity, Parallel programming (later in this course)
▶ Separate time and space efficiency of a program

▶ → trade-off between them:
▶ → can sometimes precompute results are stored;
▶ → will focus on time efficiency

30 / 110

Understanding Efficiency

▶ Challenges in understanding efficiency of solution to a computational problem:
▶ A program can be implemented in many different ways.
▶ You can solve a problem using only a handful of different algorithms.
▶ would like to separate choices of implementation from choices of more abstract

algorithm.

31 / 110

How to evaluate Efficiency

▶ Measure with a time
▶ count the operations
▶ Abstract notation of order of growth O() - “big O”
→ we argue that this is the most appropriate way of assessing the impact of choices of
algorithm in solving a problem, and in measuring the inherent difficulty in solving a
problem.

→ Are there fundamental limitations when trying to solve a problem computation-
ally?

32 / 110

Timing a Program
demo/example9.py

▶ recall that importing means to being this class into your own file
▶ use the time module

33 / 110

Timing a program is inconsistent

▶ GOAL: to evaluate different algorithms
▶ Running time varies between algorithms. 3
▶ Running time varies between implementations. 7
▶ Running time varies between computers. 7
▶ Running time is not predictable based on small inputs. 7

→ Time varies for different inputs but cannot really express a
relationship between inputs and time. 7

34 / 110

Counting operations

▶ Assume these steps take constant
time:
▶ Mathematical operations.
▶ Comparisons
▶ Assignments
▶ accessing objects in memory

▶ Then count the number of operations
executed as function of size of input.

35 / 110

Counting operations is better, but still not optimal

▶ GOAL: to evaluate different algorithms
▶ count depends on algorithm. 3
▶ count depends on implementations. 7 (e.g., “for”

vs.“while”)
▶ count independent of computers. 3
▶ no clear definition of which operations to count. 7
▶ count varies for different inputs and can come up with a

relationship between inputs and the count. 3

36 / 110

Need a better way

▶ Timing and counting evaluate implementations.
▶ Timing evaluates machines.
▶ → Want to evaluate algorithm.
▶ → Want to evaluate scalability.
▶ → Want to evaluate in terms of input size.

37 / 110

Need a better way (II)

▶ Going to focus on idea of counting operations in an algorithm, but not worry
about small variations in implementation (e.g., whether we take or 4 primitive
operations to execute the steps of a loop).

▶ Going to focus on how an algorithm performs when size of problem gets
arbitrarily large.

▶ Want to relate time needed to complete a computation, measured this way,
against the size of the input to the problem.

▶ Need to decide what to measure, given that actual number of steps may depend
on specifics of trial.

38 / 110

Need to choose which input to use to evaluate a
function

▶ Want to express efficiency in terms of size of input, so need to decide what
your input is.

▶ Could be an integer — mysum(x)
▶ Could be length of list — list_sum(L)
▶ You decide when multiple parameters to a function — search_for_elemt(L,

e)

39 / 110

Different inputs change how the programs run
demo/example10.py

▶ A function that searches for an element in a list

def search_for_elmt(L, e):
for i in L:

if i == e:
return True

return False
▶ When e is first element in the list → BEST CASE.
▶ When e is not in list → WORST CASE.
▶ When we have to look through about half of the elements in list →

AVERAGE CASE.

Want to measure this behavior in a general way.

40 / 110

Best, average, and worst cases

Suppose you are given a list L of some length len(L)
▶ Best case: minimum running time over all possible inputs of a given size, len(L)

▶ Constant for search_for_elmt.
▶ First element in any list.
▶ Average case: average running time over all possible inputs of a given size, len(L)
▶ Practical measure

▶ Worst case: maximum running time over all possible inputs of a given size,
len(L) ← We usually focus on this case
▶ linear in length of list for search_for_elmt
▶ must search entire list and not find it.

41 / 110

Orders of growth

Goals:
▶ We want to evaluate program’s efficiency when input is very big.
▶ We want to express the growth of program’s runtime as input size grows.
▶ We want to put an upper bound on growth-as tight as possible.
▶ We do not need to be precise: “order of” not “exact” growth.
▶ We will look at largest factors in runtime (which section of the program will take

the longest to run?)
▶ Generally we want tight upper bound on growth, as function of size of input, in

worst case.

42 / 110

Measuring the order of growth: The Big-O-notation

▶ Big O notation measures an upper bound on the asymptotic growth, often called
order of growth.

▶ Big O or O() is used to describe worst case
▶ worst case that occurs; is the bottleneck when a program runs.
▶ express rate of growth of program relative to the input size.
▶ Evaluates algorithm, NOT machine or implementation.

43 / 110

Exact steps vs O()

▶ Computes factorial
▶ Number of steps: 1+ 5n + 1
▶ worst case asymptotic complexity: O(n)
▶ Ignore additive constants
▶ Ignore multiplicative constants

44 / 110

What does O(N) measure

▶ Interested in describing how the amount of time needed grows as size of (input
to) problem grows.

▶ Thus, given an expression for the number of operations needed to compute an
algorithm, want to know asymptotic behavior as size of problem gets large.

▶ We will focus on term that grows most rapidly in a sum of terms.
▶ Will ignore multiplicative constants, since want to know how rapidly time required

increases as increase size of input.

45 / 110

Examples

▶ Drop constants and multiplicative factors
▶ Focus on dominant terms

46 / 110

Some examples for growth order

47 / 110

Analyzing Programs and their algorithmic complexity
▶ Combine complexity classes
▶ Analyze statements inside functions
▶ Apply some rules, focus on dominant term
▶ Law of addition for O() :
▶ Used with sequential statements
▶ O(f(n)) + O(g(n)) is O(f(n) + g(n))
▶ for example,

▶ is O(n) + O (n∗n) = O
(
n + n2) = O

(
n2) because of dominant term.

48 / 110

Analyzing Programs and their algorithmic complexity
(II)
demo/example12.py

▶ Combine complexity classes
▶ Analyze statements inside functions
▶ Apply some rules, focus on dominant term

▶ Law of Multiplication for O() :
▶ Used with nested statements/loops
▶ O(f(n))∗O(g(n)) is O (f(n)∗g(n))
▶ for example,

▶ -This is O(n)∗O(n) = O (n∗n) = O
(
n2) because the outer loop goes n times and

the inner loop goes n times for every outer loop iter.
49 / 110

Typical complexity classes

▶ O(1) denotes constant running time.
▶ O(log n) denotes logarithmic running time.
▶ O(n) denotes linear running time.
▶ O(n log n) denotes log-linear running time.
▶ O (nc) denotes polynomial running time (c is a constant).
▶ O (cn) denotes exponential running time (c is a constant being raised to a power

based on size of input).

50 / 110

Complexity classes — ordered

51 / 110

Complexity Growth

52 / 110

Exponential Complexity Example – The Curse of
Dimensionality

53 / 110

Linear complexity — e.g. linear search
demo/example13.py

▶ Simple iterative loop algorithms are typically linear in complexity.
▶ Example: Linear search on an unsorted list.

▶ Must look through all elements to decide it’s not there
▶ O(len(L)) for the loop * O(1) to test if e == L[i] (assumes we can retrieve

element of list in constant time)
▶ O(1+ 4n + 1) = O(4n + 2) = O(n)
▶ Overall complexity is O(n) - where n is len (L)

54 / 110

Linear search on sorted List
demo/example14.py

def search(L, e):
for i in range(len(L)):

if L[i] == e:
return True

if L[i] > e:
return False

return False
▶ Must only look until reach a number greater than e
▶ O(len(L)) for the loop* O(1) to test if e == Len[i]
▶ Overall complexity is O(n) — where n is len(L) (worst case we need to look at

the entire list).
▶ NOTE: order of growth is same, though runtime may differ for two search

methods.

55 / 110

Linear Complexity
demo/example15.py

▶ Searching a list in sequence to see if an element is present.
▶ Add characters of a string, assumed to be composed of decimal

digits.

def addDigits(s):
val = 0
for c in s:

val += int(c)
return val

O(len(s))

56 / 110

Linear Complexity (II)

▶ Complexity often depends on number of iterations.

def fact_iter(n):
prod = 1
for i in range(1, n+1):

prod*=i
return prod

▶ Number of times around loop is n
▶ Number of operations inside loop is a constant (in this case, 3-set i, multiply, set

prod).
▶ O(1+ 3n + 1) = O(3n + 2) = O(n).
▶ Overall just O(n).

57 / 110

Nested Loops — quadratic complexity

▶ Simple loops are linear in complexity.
▶ What about loops that have loops within them?
▶ Example: determine if one list is subset of second, i.e., every element of first,

appears in second (assume no duplicates).

def isSubset(L1, L2):
for e1 in L1:

matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True

58 / 110

Quadratic Complexity (II)

def isSubset(L1, L2):
for e1 in L1:

matched = False
for e2 in L2:

if e1 == e2:
matched = True
break

if not matched:
return False

return True

▶ outer loop executed len(L1) times
▶ each iteration will execute inner loop

up to len(L2) times, with constant
number of operations

▶ O(len(L1)*len(L2))
▶ worst case when L1 and L2 same

length, none of elements of L1 in L2
▶ O(len(L1)2)

59 / 110

Quadratic Complexity (III)
demo/example17.py

Find intersection of two lists, return a list with each element appearing only once!

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
res = []
for e in tmp:

if not(e in res):
res.append(e)

return res

60 / 110

Quadratic Complexity (IV)
demo/example17.py

def intersect(L1, L2):
tmp = []
for e1 in L1:

for e2 in L2:
if e1 == e2:

tmp.append(e1)
res = []
for e in tmp:

if not(e in res):
res.append(e)

return res

▶ first nested loop takes
len(L1)*len(L2) steps

▶ second loop takes at most len(L1)
steps

▶ determining if element in list might
take len(L1) steps

▶ if we assume lists are of roughly same
length, then O(len(L1)2)

61 / 110

O() for nested loops

def g(n):
""" assume n >= 0 """
x = 0
for i in range(n):

for j in range(n):
x+=1

return x

▶ Computes n2 very inefficiently.
▶ When dealing with nested loops, look at the ranges.
▶ Nested loops, each iterating n times.
▶ O

(
n2)

62 / 110

Logarithmic Complexity — Bisection example

▶ Complexity grows as log of size of one of its inputs
▶ example:

▶ Bisection search
▶ binary search of a list

▶ Bisection search: suppose we want to know if a particular element is present in a
list

▶ Saw that we could just “walk down” the list, checking each element
▶ Complexity was linear in length of the list
▶ Suppose we know that the list is ordered from smallest to largest
▶ Saw that sequential search was still linear in complexity
▶ Can we do better?

63 / 110

Yes we can — Bisection search

1. pick an index, i, that divides list in
half

2. ask if L[i]== e
3. if not, ask if L[i] is larger or smaller

that e
4. Depending on answer, search left or

right half of L for e

▶ A new version of a divide-and-conquer algorithm
▶ Break into smaller version of problem (smaller list), plus some simple operations
▶ Answer to smaller version is answer to original problem.

64 / 110

Complexity Analysis of Bisection

▶ finish looking through list when

1 = n/2i

so i = log n

▶ complexity of recursion is O(log n)−
where n is len(L)

65 / 110

Bisection Code
demo/example17.py

66 / 110

Complexity of first Bisection Method

Implementation 1 — bisect_search1 (demo/example17.py)
▶ O(log n) bisection search calls

▶ On each recursive call, size of range to be searched is cut in half
▶ If original range is of size n, in worst case down to range of size 1 when

n/
(
2Nk

)
= 1; or when k = log n

▶ O(n) for each bisection search call to copy list
▶ This is the cost to set up each call, so do this for each level of recursion

▶ O(log n) ∗ O(n)→ O(n log n)
▶ If we are really careful, note that length of list to be copied is also halved on each

recursive call.
▶ Turns out that total cost to copy is O(n) and this dominates the log n cost due to

the recursive calls.

67 / 110

An alternative Bisection algorithm

▶ still reduce size of problem by
factor of two on each step
but just keep track of low and
high portion of list to be
searched

▶ avoid copying the list
▶ complexity of recursion is

again O(log n) - where n is
len(L)

68 / 110

Bisection (II) Code
demo/example18.py

69 / 110

Algorithmic Complexity — Bisect II
demo/example18.py

▶ Implementation 2 — bisect_search2 and its helper
▶ O(log n) bisection search calls
▶ On each recursive call, size of range to be searched is cut in half if original range is

of size n, in worst case down to range of size 1 when n/
(
2k) = 1; or when k = log n

▶ Pass list and indices as parameters
▶ list never copied, just re-passed as a pointer
▶ Thus O(1) work on each recursive call
▶ O(log n)⋆O(1)→ O(log n)

70 / 110

Exponential Complexity

▶ Recursive functions where more than one recursive call for each size of problem
▶ Towers of Hanoi

▶ Many important problems are inherently exponential
▶ Unfortunately, as cost can be high will lead us to consider approximate solutions as

may provide reasonable answer more quickly.

71 / 110

Towers of Hanoi
https://en.wikipedia.org/wiki/Tower_of_Hanoi

▶ The Tower of Hanoi is a mathematical game or puzzle.
▶ It consists of three rods and a number of disks of different sizes, which can slide

onto any rod.
▶ The puzzle starts with the disks in a neat stack in ascending order of size on one

rod, the smallest at the top.
▶ The objective of the puzzle is to move the entire stack to another rod, obeying

the following simple rules:
1. Only one disk can be moved at a time.
2. Each move consists of taking the upper disk from one of the stacks and placing it on

top of another stack or on an empty rod.
3. No larger disk may be placed on top of a smaller disk.
4. With 3 disks, the puzzle can be solved in 7 moves.

The minimal number of moves required to solve a Tower of Hanoi puzzle is 2n− 1,
where n is the number of disks.

72 / 110

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Towers of Hanoi
Let’s watch the animation at https://en.wikipedia.org/wiki/Tower_of_Hanoi

73 / 110

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Iterative solution

▶ A simple solution for the toy puzzle is to alternate moves between the smallest
piece and a non-smallest piece.

▶ When moving the smallest piece, always move it to the next position in the same
direction (to the right if the starting number of pieces is even, to the left if the
starting number of pieces is odd).

▶ If there is no tower position in the chosen direction, move the piece to the
opposite end, but then continue to move in the correct direction.

▶ For example, if you started with three pieces, you would move the smallest piece
to the opposite end, then continue in the left direction after that.

▶ When the turn is to move the non-smallest piece, there is only one legal move.
▶ Doing this will complete the puzzle in the fewest moves.

74 / 110

Code
demo/example20.py

def moveTower(height,fromPole, toPole, withPole):
if height >= 1:

moveTower(height-1,fromPole,withPole,toPole)
moveDisk(fromPole,toPole)
moveTower(height-1,withPole,toPole,fromPole)

def moveDisk(fp,tp):
print("moving disk from",fp,"to",tp)

no_of_disks = 5
moveTower(no_of_disks,"A","B","C")

75 / 110

Towers of Hanoi — Complexity
Let tn denote time to solve tower

tn = 2tn−1 + 1
= 2 (2tn−2 + 1) + 1
= 4tn−2 + 2+ 1
= 4 (2tn−3 + 1) + 2+ 1
= 8tn−3 + 4+ 2+ 1
= 2ktn−k + 2k−1 + . . .+ 4+ 2+ 1
= 2n−1 + 2n−2 + . . .+ 4+ 2+ 1
= 2n − 1

so order of growth is O (2n)

Geometric growth

a = 2n−1 + . . .+ 2+ 1
2a = 2n + 2n−1 + . . .+ 2
a = 2n − 1

76 / 110

Example: Exponential Complexity

▶ Given a set of integers (with no repeats), want to generate the collection of all
possible subsets — called the power set.

▶ {1, 2, 3, 4} would generate

{}, {1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

▶ Order doesn’t matter — same set as well

· {}, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, {1, 4},
{2, 4}, {1, 2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

77 / 110

Power Set Concept — Recursively

▶ We want to generate the power set of integers from 1 to n
▶ Assume we can generate power set of integers from 1 to n− 1.
▶ Then all of those subsets belong to bigger power set (choosing not include n);

and all of those subsets with n added to each of them also belong to the bigger
power set (choosing to include n).

▶ {}, {1}, {2}, {1, 2}, {3}, {1, 3}, {2, 3}, {1, 2, 3}, {4}, {1, 4}, {2, 4},
{1, 2, 4}, {3, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}

▶ Nice recursive description!

78 / 110

Exponential Complexity
demo/example21.py

def genSubsets(L):
res = []
if len(L) == 0:

return [[]] ##list of empty sets
smaller = genSubsets(L[:-1]) #all subsets without last element
extra = L[-1:]
new = []
for small in smaller:

new.append(small + extra) #for all smaller sol, add one with last el.
return smaller + new

Ltest = [1,2,3,4,5]
print(genSubsets(Ltest))

79 / 110

Exponential Complexity (II)

def genSubsets(L):
res = []
if len(L) == 0:

return [[]]
smaller = genSubsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small + extra)
return smaller + new

▶ assuming append is constant time
▶ time includes time to solve smaller

problem, plus time needed to make a
copy of all elements in smaller problem

80 / 110

Exponential Complexity (III)

def genSubsets(L):
res = []
if len(L) == 0:

return [[]]
smaller = genSubsets(L[:-1])
extra = L[-1:]
new = []
for small in smaller:

new.append(small + extra)
return smaller + new

▶ but important to think about size of
smaller

▶ know that for a set of size k there are
2k cases

▶ how can we deduce overall complexity?

81 / 110

Exponential Complexity (IV)

▶ let tn denote time to solve problem of size n
▶ let sn denote size of solution for problem of size n
▶ tn = tn−1 + sn−1 + c (where c is some constant number of operations)
tn = tn−1 + 2n−1 + c
= tn−2 + 2n−2 + c + 2n−1 + c
= tn−k + 2n−k + . . .+ 2n−1 + kc
= t0 + 20 + . . .+ 2n−1 + nc
= 1+ 2n + nc

Thus computing power set is O (2n)

82 / 110

Analyze Iterative Fibonacci for Complexity
demo/example22.py, demo/example21.py

F0 = 0, F1 = 1,
Fn = Fn−1 + Fn−2, for n > 1.

83 / 110

Analyze Recursive Fibonacci for Complexity
demo/example23.py

84 / 110

Analyze recursive Fibonacci for Complexity (II)
▶ Actually can do a bit better than 2n since tree of cases thins out to right.
▶ But complexity is still exponential.

85 / 110

Complexity of some Python functions

Lists: n is len(L)
▶ index — O(1)
▶ store — O(1)
▶ length — O(1)
▶ append — O(1)
▶ == — O(n)
▶ remove — O(n)
▶ copy — O(n)
▶ reverse — O(n)
▶ iteration — O(n)
▶ in list — O(n)

Dictionaries: n is len(L)
Worst case:
▶ index — O(n)
▶ store — O(n)
▶ length — O(n)
▶ delete — O(n)
▶ iteration — O(n)

Average case:
▶ index — O(1)
▶ store — O(1)
▶ delete — O(1)
▶ iteration — O(n)

86 / 110

3. Some useful Libraries in Python

1. Numpy
2. Scipy
3. Matplotlib
4. Pandas
5. JAX

87 / 110

NumPy, SciPy, Matplotlib, Pandas, JAX...

88 / 110

Python and Libraries

If we use Python in combination with its
modules
▶ NumPy
▶ SciPy
▶ Matplotlib
▶ Pandas
▶ JAX

it belongs to the top numerical
programming languages.

89 / 110

Do not re-invent the wheel — NumPy

90 / 110

Do not re-invent the wheel — SciPy

91 / 110

Do not re-invent the wheel — Matplotlib

92 / 110

Pandas

93 / 110

Simple Examples

Let’s have a look at the Jupyter Notebook
Lecture_5b.ipynb

94 / 110

Numpy Example: Poisson equation
▶ Consider

∇2u = ∆u =
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = f, x ∈ Ω Domain

▶ with boundary condition

u = g, x ∈ ∂ΩBoundary of domain

▶ Model useful in: heat conduction, electromagnetism, astrophysics (gravity), fluid
dynamics, ...

▶ Simplest example of an elliptic Partial Differential Equation (PDE)

95 / 110

Numpy Example: Poisson equation
▶ Consider ∇2u = ∂2u

∂x2 + ∂2u
∂y2 = f

▶ on the square domain

96 / 110

Example: Poisson equation (III)
▶ Finite differences

∇2u =
∂2u
∂x2 +

∂2u
∂y2 = f

▶ discretize square domain

97 / 110

Example: Poisson equation (IV)
▶ Finite differences

∇2u =
∂2u
∂x2 +

∂2u
∂y2 = f

∇2u ≈u (xi+1, yj)− 2u (xi, yj) + u (xi−1, yj)

∆x2

+
u (xi, yj+1)− 2u (xi, yj) + u (xi, yj−1)

∆y2

= f (u (xi, yj)) .

▶ discretize square domain

98 / 110

Example: Poisson equation (V)
▶ Finite differences

∇2u ≈ ui+1,j − 2ui,j + ui−1,j
∆x2 +

ui,j+1 − 2ui,j + ui,j−1
∆y2 = fi,j

▶ discretize square domain

99 / 110

Jacobi-Method
▶ Jacobi-method

un+1
i,j =

1
2 (∆x2 +∆y2)

[(
un

i+1,j + un
i−1,j

)
∆y2 +

(
un

i,j+1 + un
i,j−1

)
∆x2 − fi,j∆x2∆y2]

▶ Discretized square domain

100 / 110

Poisson Equation

un+1
i,j =

1
2 (∆x2 +∆y2)

[(
un

i+1,j + un
i−1,j

)
∆y2 +

(
un

i,j+1 + un
i,j−1

)
∆x2 − fi,j∆x2∆y2]

101 / 110

Poisson Equation

Compare implementations (vectorized):
un+1

i,j =
1

2 (∆x2 +∆y2)

[(
un

i+1,j + un
i−1,j

)
∆y2 +

(
un

i,j+1 + un
i,j−1

)
∆x2 − fi,j∆x2∆y2]

102 / 110

Nonlinear equations & optimization.

▶ Our course heavily relies on solving large systems of nonlinear equations or
(un-)constrained optimization problems.

▶ → In Python, you have plenty of options, e.g.:
▶ SciPy.org
▶ PyOpt.org
▶ IPOPT (https://www.coin-or.org/lpopt;

https://github.com/xuy/pyipopt)

103 / 110

https://www.coin-or.org/lpopt
https://github.com/xuy/pyipopt

Constrained optimization with SciPy

The minimize function also provides an interface to several constrained minimization
algorithm.
As an example, the Sequential Least SQuares Programming optimization algorithm
(SLSQP) will be considered here.
This algorithm allows to deal with constrained minimization problems of the form:

minF(x)
subject to Cj(X) = 0, j = 1, . . . , MEQ

Cj(x) ≥ 0, j = MEQ + 1, . . . ,M
XL ≤ x ≤ XU, I = 1, . . . ,N.

104 / 110

Constrained optimization — example

As an example, let us consider the problem of optimizing the function:

f(x, y) = 2xy + 2x · x2 · 2y2

subject to an equality and an inequality constraints defined as:

x3 − y = 0
y− 1 > 0

105 / 110

Root finding (nonlinear equations)

▶ Finding a root of a set of non-linear equations can be achieve using the root
function.

▶ Several methods are available, amongst which hybr (the default) and lm which
respectively use the hybrid method of Powell and the LevenbergMarquardt
method from MINPACK.

▶ Consider a set of non-linear equations
x0 cos (x1) = 4,
x0x1 − x1 = 5.

106 / 110

Example for Nonlinear Equations

import numpy as np
from scipy.optimize import root

def func2(x):
f = [x[0] * np.cos(x[1]) - 4, x[1]*x[0] - x[1] - 5]
df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1])],[x[1], x[0] - 1]])
return f, df

sol = root(func2, [1, 1], jac=True, method='lm')
solution = sol.x

print("the solution of this nonlinear set of equations is: ", solution)

107 / 110

Want more?

PyPI is the index of Python software
packages. It currently indexes 506,250
packages, so the choice is really vast.
Almost all packages can be installed with a
single command by running pip install
packagename.

108 / 110

How to tackle a complete project in python

▶ The examples so far were quite compact and composed to convey programming
constructs in a gentle pedagogical way.

▶ Now, the idea is to solve a more comprehensive real-world problem by
programming.

▶ The problem solving process in this example gets quite involved.
▶ How to proceed:

1. Problem Statement
2. Derivation of the Algorithm
3. Program Development and Testing
4. Verification
5. Visualization

109 / 110

Questions for today?

110 / 110

