Data Science and Advanced Programming — Lecture 6¢
Object Oriented Programming

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

October 20th, 2025 | 10:15-14:00 | Anthropole 2106

1/110

1. Python Classes and Inheritance

Vehicles

@&

Convertible

1/110

Implementing the Class vs using the Class

Write code from two different perspectives:

» implementing a new object type with P using the new object type in Code
a class P create instances of the object type
» define the class » do operations with them

» define data attributes (WHAT IS
the object)

» define methods (HOW TO use the
object)

2/110

Class definition of an object type versus instance of a

class
» Class name is the type: >
class Coordinate(object)
» Class is defined generically >
» use self to refer to some instance

while defining the class

(self.x - self.y)**2

self is a parameter to methods in the
class definition.

class defines data and methods >
common across all instances.

instance is one specific object
coord = Coordinate(1,2)

Data attribute values may vary
between instances
cl = Coordinate(1,2)
c2 = Coordinate(3,4)
» c1 and c2 can have different data
attribute values c1.x and c2.x
because they are different objects.

Instance has the structure of the
class.

3/110

Why should we use OOP and classes of objects?

» mimic real life

» group different objects part of the same type (e.g. car: age, name).

Object “car”.
Age: 70y
Name
associated
with it:
“Oldtimer”

90y old plane

10y old plane

§ 2y old car

4/110

Why should we use OOP and classes of objects?

» mimic real life
» group different objects part of the same type (e.g. car: age, name).

4/110

Recall: Groups of Objects have attributes

» data attributes
» how can you represent your object with data?
» what it is
» for a coordinate: x and y values
» for a car : e.g. age, name
» procedural attributes (behavior/operations/methods)
» how can someone interact with the object?
» what it does/what can your object do?
» for a coordinate: find distance between two
» for a car: make a sound (horn)

5/110

Recall: How to define a class

Class definition name Class parent
\ ' i
class|machine(object):
Special method def| __init__ (self, age):
to create an instance /'Self.age — age
self.name = None

AN

mymachine = machine

Variable to refer to
an instance of the class

What data initializes
amachine type

name is a data attribute
even though an instance
is not initialized with it as
a parameter

One instance Mapped to self.age

in class def

6/110

Getter” and “Setter” Methods

demo/example4.py

class machine(object):
def __init__ (self, age):

self.age = age
self.name = None

def get_age(sel):
return self.age

def get_name(self):
return self.name

def set_age(self, newage):
self.age = newage

def set_name(self, newname=""):
self.nhame = newname

def str (self):

return "Machine:"+str(self.name)+":"+str(self.age)

» getters and setters should be used outside of class to access data attributes.

» Implementing getters and setters help to prevent from introducing bugs.

7/110

Recall: An instance — not notation

» Instantiation creates an instance of an object
a = machine(3)

» Dot notation used to access attributes (data and methods)
though it is better to use getters and setters to access data

attributes
» a.age

» — access data attribute
» — allowed, but not recommended

» a.get_age()
» — access method
> — best to use getters and setters

8/110

Information hiding

» Author of class definition may change data attribute variable names

class machine(object):
def __init_ (self, age):
Replaced age data : age
attribute by yvears def get_age(self):
return self.years

» If you are accessing data attributes outside the class and class definition changes,
may get errors
» outside of class, use getters and setters instead use a.get_age() NOT a.age

» good style
P easy to maintain code
» prevents bugs

9/110

Python: Not so good at information hiding

» Allows you to access data from outside class definition
print(a.age)

» Allows you to write to data from outside class definition

(int <> str) a.age = 'infinite'

» Allows you to create data attributes for an instance from outside class definition
(e.g., size)
a.size = "tiny"

— It's not good style to do any of these!

10/110

Default arguments

» Default arguments for formal parameters are used if no actual argument is given

def set_name(self, newname=""):
self .name = newname

» Default argument used here

a = machine(3)
a.set_name() » Prints “ "
print(a.get_name())

P> argument passed in is used here

a = machine(3)
a.set_name("airbus") » Prints “airbus”
print(a.get_name())

11/110

Hierarchies

Creatures

Consider everything on this picture as an Object!

>
>

| 2

Every Creature has an age

Fish and Humans are Creatures. Humans have different (data) attributes than
Fish.

Shark builds on Object Fish.

Student builds on Object Human. (Student is Creature, is human, has an age,
and Major field of study...)

Idea of HIERARCHY.

Add functionality to each of those “subgroups”
12/110

Hierarchies

> parent class (superclass)
» child class (subclass)

>

>
|

inherits all data and methods/
behaviors of parent class.

add more info.

add more behavior. (e.g. student
study, while sharks do not)

override behavior. (e.g. person can
speak, but say only “hello”, while a
student can say “hi dude” —
override “speak” function)

Creatures

Shark

13/110

Example of inheritance: Parent class

demo/example5. py

class Animal(object):

def

def

def

def

def

def

__init__(self, age):
self.age = age

self .name = None
get_age(self):

return self.age
get_name(self):

return self.name
set_age(self, newage):
self.age = newage
set_name(self, newname=""):
self .name = newname
_str__(self):

return "animal:"+str(self.name)+"

P everything is an object

P class object implements basic
operations in Python, such as binding
variables, etc.

:"+str(self.age)

14/110

Inheritance: Subclass “Cat”

demo/example5. py

Inherits all attributes of Animal:

/ __init_()

age.name

- get_age(), get_name()
class Ca{(Anlmal):

set age(), set_name()

. _str_()
Add new functionality ——" def speak(self).

by introducing the method print("meow")
“speak’ def| str_ (self):
% return "cat:"+str(self.name)+":"+str(self.age)

Overrides __str_ ()

» add new method/functionality with speak ().
» instance of type cat can be called with new methods.
» instance of type Animal throws error if called with Animal's new method.

» __init__ is not missing, uses the Animal version.

15/110

Which method to use

» Subclass can have methods with same name as superclass.
» For an instance of a class, look for a method name in current class definition.

» If not found, look for method name up the hierarchy (in parent, then
grandparent, and so on).

» Use first method up the hierarchy that you found with that method name.

16 /110

Example of inheritance: Parent class

demo/example5. py

class Animal(object):

def

def

def

def

def

def

__init__(self, age):
self.age = age
self.name = None
get_age(self):

return self.age
get_name(self):

return self.name
set_age(self, newage):
self.age = newage

set_name(self, newname=""):

self .name = newname
str__(self):

return "animal:"+str(self.name)+":"+str(self.age)

17/110

Example of Inheritance — Person

demo/example6.py

class Person (Animal) : |par
def _ init_ (self, name, age): eﬂfc/es
[Animal._init__ (self, age) |Ca// ’-“4,7%
self.set name (name) o ‘1'1?231 27
self.friends = [] . o,

| def get friends(self): |
return self.friends

| def add friend(self, fname): | tr/b’/t@
if fname not in self.friends:
self.friends.append (fname)
| def speak (self): | n
print ("hello") eb"lhe”j
| def age diff(self, other): | 0%
diff = self.age - other.age
print (abs (diff), "year difference") Ol’@fr,de
| def str (self): \St"\ ln‘qnl‘ﬁza
return "person:"+str (self.name)+":"+str (self.age) e”?od 1%

18/110

Example of Inheritance — Student (Subclass of

Person, i.e., sub-subclass of Animal)

demo/example7.py

he .
|1mport random fro, & iy .
2 b,
Wy 00
class Student (|Porscn): ‘ in dDJI;C/&
]
def _ init_ (self, name, age, major=None): @17 _E'P/&P .
Person. init (self, name, age) l’ﬁaj SZ‘SO
— — Ap,., 02
self.major = major ‘ o, ttf/bw ‘91701
def change major(self, major): % o,
self.major = major da{a
def speak(self):
r =|random.random () |
if r < 0.25:
print ("i have homework") > ?,
£ 0.95 < . U %ng Yy,
elif 0.25 <= r < 0.5: 2 O /70“/
. C
print ("i need sleep") '70 ,OQ'O /‘5'5‘ 0
i 0 ey, Yoy
elif 0.5 <= r < 0.75: 0 7] Meg e he
.) oy Vihy
print ("i should eat") & lld
Ve, “cs
else: bs
print ("i am watching tv")
def _ str (self):
return ident:"+str(self.name)+":"+str(self.age)+":"+str (self.major)

19/110

Class Variables

demo/example8.py

» class variables and their values are shared between all instances of a class

class Rabbit(Animal): < Parentclass
- 1
Class def __init_(s_elf, age, parentl=None, parent2=None):
Animal. __init__ (self, age)
self.parentl = parentl
self.parent2 = parent2
Lr;srtiggizee > Self.rid‘ =|Rabb|ttag |‘,’ Access class variable

Rabblt-tag += l | -« Incrementing class variable changes it
for all instances that may reference it.

» Tag used to give unique ID to each new rabbit instance

20/110

Rabbit “Getter” methods

demo/example8.py

class Rabbit (Animal):

tag =1
def init (self, age, parentl=None, parentZ=None):
Animal. init (self, age) @
self.parentl = parentl “\(\% 26(0
self.parentZ = parent2 60(\2\5 \g\&‘(\ >
self.rid = Rabbit.tag O™ 6\0% o ©
i - «® e,%‘“ ©
Rabbit.tag += 1 ‘(\‘5\0 (ﬁ?\'
def get rid(self): ’\ﬁo‘e@
return str(self.rid) Jz£f1i1l1l(3) c',\""(‘
def get parentl (self): 65598'
return self.parentl el“_‘o Qe &5 e
def get parent2(self): &t o e a0
_ _%2 %3\0 B\SO d)?’ /.&
return self.parent2 (2 @@ 09 o2
£0 a‘e’d ‘(\ez ng
,‘-\0{‘ ‘{\36:\(0«\
QQ’“/{\@
@

21/110

Working with your own types

» define + operator between two Rabbit instances
» define what something like this does: r4= ri+r2 where r1 and r2 are Rabbit
instances.
» r4 is a new Rabbit instance with age 0
» 14 has self as one parent and other as the other parent
» in __init__, parentl and parent2 are of type Rabbit

def add (self, other):

returning object of same type as this class

return |Rabbit (0, self, other)

X ™~

recall Rabbit’s init (self, age, parentl=None, parent2=None)

22/110

Special Method to Compare two Rabbits

» Decide that two rabbits are equal if they have the same two parents.

def _ _eqg_ (self, other):

: self.parentl.rid == other.parentl.rid \

and self.parent?.rid == other.parent2.rid
S - . .
oa@ﬁ“ |parents_opp051te‘= self.parent2.rid == other.parentl.rid \
© and self.parentl.rid == other.parent2.rid

return parents same or parents opposite

» Compare IDs of parents since IDs are unique (due to class var)
P> note you can't compare objects directly

» for ex. with self.parentl == other.parentl
» this calls the ___eq__ method over and over until call it on None and gives an
AttributeError when it tries to do None.parent1

23/110

Object-oriented Programming

Create your own collections of data.
Organize information.

Division of work.

Access information in a consistent manner.

Add layers of complexity.

vVvyvyVvyypy

Like functions, classes are a mechanism for decomposition and abstraction in
programming.

24/110

2. Program Efficiency

» Measuring orders of growth of algorithms.
» Big “O" notation.
» Complexity classes.

25/110

“We are drowning in information and starving for
knowledge.”

— John Naisbitt

26 /110

Big Data and its availability

https://ourworldindata.org/internet

Number of people using the Internet

Number of people who used the Internet in the last three months.

BB Table | @ Map | | Chart # Edit countries and regions
4 illon
3 billon
2 billon
1 billon

1990 1995 2000 2005 2010 2015 2020

> 1O @
Data source: OWID based on International Telecommunication Union (via World Bank) and UN (2022) - Leam
more about this data "

OurWorldinData.org/intemet | CC BY

& Settings

World

Asia

North America

South America

Oceania
@ 2020
=< |

Number of internet users worldwide from 2005 to 2022

(in millions)

5000

3000

1,000

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

27/110

https://ourworldindata.org/internet

Big Data and its availability

http://www.live-counter.com/how-big-is-the-internet

Size of the internet as we speak: TBD Petabytes
> 1 Gigabyte ~ 1000 MB
> 1 Terabyte ~ 1000 GB
» 1 Petabyte ~ 1000 TB
> 1 Exabyte ~ 1000 PB
» 1 Zettabyte ~ 1000 EB

1 Gigabyte: If an author writes a book of about 190 pages, more specifically, of
383,561 characters (with spaces and punctuation included) every week for 50 years —
this would be a billion letters or bytes.
1 Exabyte: 212 million DVDs weighing 3,404 tons.
1 Zettabyte: 1,000,000,000,000,000,000,000 bytes or characters.
This, printed on graph paper (with one letter in each mm? square) would be a paper
measuring a billion km. The entire surface of the Earth (510 million km?) would be
covered by a layer of paper almost twice.
28 /110

http://www.live-counter. com/how-big-is-the-internet

Other sources of Big Data

» Scientific experiments
» CERN (e.g., LHC) generates ~
25 petabytes per year (2012).
» LIGO generates ~ 1 Petabyte
per year
» Numerical computations
> .

https://www.olcf.ornl.gov/summit/

https://home.cern/

—

https://www.ligo.
caltech.edu/

29/110

https://www.olcf.ornl.gov/summit/
https://home.cern/
https://www.ligo.caltech.edu/
https://www.ligo.caltech.edu/

Efficiency of Programs

» Computers getting faster and faster — so maybe efficient programs don't matter?
» But data sets can be very large (growing exponentially, and faster than computer
power)
» Thus, simple solutions may simply not scale with size in acceptable manner.
» How can we decide which option for program is most efficient?
» — Algorithmic Complexity, Parallel programming (later in this course)
» Separate time and space efficiency of a program

» — trade-off between them:
» — can sometimes precompute results are stored;
» — will focus on time efficiency

30/110

Understanding Efficiency

» Challenges in understanding efficiency of solution to a computational problem:
» A program can be implemented in many different ways.
» You can solve a problem using only a handful of different algorithms.
» would like to separate choices of implementation from choices of more abstract
algorithm.

31/110

How to evaluate Efficiency

» Measure with a time
» count the operations
» Abstract notation of order of growth O() - “big O"

— we argue that this is the most appropriate way of assessing the impact of choices of
algorithm in solving a problem, and in measuring the inherent difficulty in solving a
problem.

— Are there fundamental limitations when trying to solve a problem computation-
ally?

32/110

Timing a Program
demo/example9.py

» recall that importing means to being this class into your own file

» use the time module

import time

def ¢ _to f(c):
return c*9/5 + 32
S t0 = time.clock()
+ start clock ¢ _to £(100000)

. caHfunctOi;::::::::::tl = time.clock() - tO

Priﬂt{"t =llr t, IF:I"I"r tl, ”S;")
+ stop clock

33/110

Timing a program is inconsistent

» GOAL: to evaluate different algorithms
» Running time varies between algorithms.
» Running time varies between implementations. X
» Running time varies between computers. X
» Running time is not predictable based on small inputs. X

— Time varies for different inputs but cannot really express a
relationship between inputs and time. X

34/110

Counting operations

» Assume these steps take constant
time:
» Mathematical operations.
» Comparisons
» Assignments
P accessing objects in memory

» Then count the number of operations
executed as function of size of input.

| o® |total =0 |

def c_to_f(c):
return|c*9.0/5 + 32|

15095
def mysum(x):

for |1 in range(x+l):

o total += 1 | &
o return total o
'LOQ

mysum - 1+3x ops

35/110

Counting operations is better, but still not optimal

» GOAL: to evaluate different algorithms

>
>

>

v

count depends on algorithm.

count depends on implementations. X (e.g., “for
vs.“while")

count independent of computers.

no clear definition of which operations to count. X
count varies for different inputs and can come up with a
relationship between inputs and the count.

36/110

Need a better way

vVvyyvyyvyy

Timing and counting evaluate implementations.

Timing evaluates machines.
— Want to evaluate algorithm.
— Want to evaluate scalability.

— Want to evaluate in terms of input size.

37/110

Need a better way (II)

» Going to focus on idea of counting operations in an algorithm, but not worry
about small variations in implementation (e.g., whether we take or 4 primitive
operations to execute the steps of a loop).

» Going to focus on how an algorithm performs when size of problem gets
arbitrarily large.

» Want to relate time needed to complete a computation, measured this way,
against the size of the input to the problem.

» Need to decide what to measure, given that actual number of steps may depend
on specifics of trial.

38/110

Need to choose which input to use to evaluate a
function

» Want to express efficiency in terms of size of input, so need to decide what
your input is.

» Could be an integer — mysum(x)

Could be length of list — 1list_sum(L)

» You decide when multiple parameters to a function — search_for_elemt (L,

e)

v

39/110

Different inputs change how the programs run

demo/examplel0.py

» A function that searches for an element in a list

def search_for_elmt(L, e):
for i in L:
if i == e:
return True
return False

» When e is first element in the list — BEST CASE.
» When e is not in list = WORST CASE.

» When we have to look through about half of the elements in list —
AVERAGE CASE.

Want to measure this behavior in a general way.

40/110

Best, average, and worst cases

Suppose you are given a list L of some length 1en(L)

» Best case: minimum running time over all possible inputs of a given size, 1en(L)
» Constant for search_for_elmt.
» First element in any list.
» Average case: average running time over all possible inputs of a given size, len(L)
» Practical measure

» Worst case: maximum running time over all possible inputs of a given size,

len(L) <+ We usually focus on this case

» linear in length of list for search_for_elmt
» must search entire list and not find it.

41/110

Orders of growth

Goals:

>
>
>
>
>

| 2

We want to evaluate program’s efficiency when input is very big.

We want to express the growth of program’s runtime as input size grows.

We want to put an upper bound on growth-as tight as possible.

We do not need to be precise: “order of " not “exact” growth.

We will look at largest factors in runtime (which section of the program will take
the longest to run?)

Generally we want tight upper bound on growth, as function of size of input, in
worst case.

42/110

Measuring the order of growth: The Big-O-notation

» Big O notation measures an upper bound on the asymptotic growth, often called
order of growth.
» Big O or O() is used to describe worst case

» worst case that occurs; is the bottleneck when a program runs.
» express rate of growth of program relative to the input size.
» Evaluates algorithm, NOT machine or implementation.

43/110

Exact steps vs O()

def fact_iter(n):
""assumes n an int >= 0"

answer = 1
while n > 1:
‘ answer *= n ‘ answer = answer * n
n-= temp=n-1
return answer n = temp

Computes factorial
Number of steps: 1 +5n+1

>
>
» worst case asymptotic complexity: O(n)
» Ignore additive constants

>

Ignore multiplicative constants

44/110

What does O(N) measure

» Interested in describing how the amount of time needed grows as size of (input
to) problem grows.

» Thus, given an expression for the number of operations needed to compute an
algorithm, want to know asymptotic behavior as size of problem gets large.

» We will focus on term that grows most rapidly in a sum of terms.

» Will ignore multiplicative constants, since want to know how rapidly time required
increases as increase size of input.

45/110

Examples

» Drop constants and multiplicative factors

» Focus on dominant terms

o(n?)
oln?)
oln)

o(n o8 n)

o(3" :

n’ + 2n + 2

n? + 100000n + 31000
log(n) + n + 4
0.0001*n*log(n) + 300n
2n3% + 3%

46 /110

Some examples for growth order

!
\'\“ea
"' N
\) AC
o@ RS
ot 2
¢! , o
2
\9%
a(“““\\ % //
\O% /
: A\
»(\3
. o
A\ N
\ob o°

-]

47/110

Analyzing Programs and their algorithmic complexity

vVvvyVvTVvyyy

Combine complexity classes

Analyze statements inside functions

Apply some rules, focus on dominant term
Law of addition for O() :

Used with sequential statements

O(f(n)) + O(g(n)) is O(f(n) + g(n))

for example,
for i in range(n): *# Q)
Borengemt e o
print('a’) O\(\\x
for j in range(n*n): (*(\\
print('b") ©

is O(n) + O(n*n) = O(n+ n?) = O(n?) because of dominant term.

48/110

Analyzing Programs and their algorithmic complexity

(1)

demo/examplel2.py

» Combine complexity classes

» Analyze statements inside functions

» Apply some rules, focus on dominant term
» Law of Multiplication for O() :

> Used with nested statements/loops

> O(f(n))" O(g(n)) is O(f(n)"g(n))

» for example,

0\(\\ “

for i in range(n):
for j in range(n): o Oof O\°\
print('a') O\(\

> -This is O(n)*O(n) = O(n*n) = O (n?) because the outer loop goes n times and
the inner loop goes n times for every outer loop iter.

49/110

Typical complexity classes

vVvyyvyVvyyy

O
O
O
O

(1) denotes constant running time.
(log n) denotes logarithmic running time.

(n) denotes linear running time.
(

nlog n) denotes log-linear running time.

O (n°) denotes polynomial running time (c is a constant).

O(c") denotes exponential running time (c is a constant being raised to a power

based on size of input).

50/110

Complexity classes — ordered

fed)

WL
S (\'&
oo

O(log n)

O (n)

O(n log n):

O (n®)

constant

T — logarithmic

linear —

« loglinear

polynomial — -

«— exponential

51/110

Complexity Growth

axs

o(1)
0O(log n)
o(n)

O(n log n)
0(n"2)

0(2%n)

i

1
10
10
100

1024

“ - 1000 = 1000000
1 1 1

2
100
200

10000

12676506
00228229
40149670

3205376

3

1000
3000
1000000

1071508607186267320948425049060
0018105614048117055336074437503
8837035105112493612249319837881
5695858127594672917553146825187
1452856923140435984577574698574
8039345677748242309854210746050
6237114187795418215304647498358
1941267398767559165543946077062
9145711964776865421676604298316

52624386837205668069376

6

1000000
6000000
1000000000000

Good luck!!

52/110

Exponential Complexity Example — The Curse of

Dimensionality

Time for parameter study

Number of model runs

Number of parameters

(at 10 points per dimension) (at 1 second per run)

(the dimension)

10 sec

10
10

~ 1.6 min

0

~ 16 min

1,000
10,000
100,000

1,000,000

~ 2.7 hours
~ 1.1 days
~ 1.6 weeks

3 trillion years
(240x age of the universe)

1e20

20

53/110

Linear complexity — e.g. linear search

demo/examplel3.py

» Simple iterative loop algorithms are typically linear in complexity.
» Example: Linear search on an unsorted list.

def linear search(L, e):
found = False

. N
for i in range(len(L)): a«&@ié@
if e == L[1]: éﬁoQgﬁﬁiogﬁx
found = True | ¥ " L

return found W§5

» Must look through all elements to decide it's not there
» O(len(L)) for the loop * O(1) to test if e == L[i] (assumes we can retrieve
element of list in constant time)
» O(1+4n+1)= O(4n+2) = O(n)
» Overall complexity is O(n) - where n is len (L)
54/110

Linear search on sorted List

demo/exampleld.py

def search(L, e):
for i in range(len(L)):
if L[i] == e:
return True
if L[i] > e:
return False
return False

» Must only look until reach a number greater than e
0(len(L)) for the loop* 0(1) to test if e == Len[i]

» Overall complexity is 0(n) — where n is 1en(L) (worst case we need to look at
the entire list).

v

» NOTE: order of growth is same, though runtime may differ for two search
methods.

55/110

Linear Complexity

demo/examplel5.py

» Searching a list in sequence to see if an element is present.

» Add characters of a string, assumed to be composed of decimal
digits.

def addDigits(s):
val = 0
for ¢ in s:
val += int(c)
return val

O(len(s))

56 /110

Linear Complexity (I1)

» Complexity often depends on number of iterations.

def fact_iter(n):
prod = 1
for i in range(l, n+1):
prod*=i
return prod

» Number of times around loop is n
» Number of operations inside loop is a constant (in this case, 3-set i, multiply, set
prod).
» O(14+3n+1)=03n+2)= 0(n).
» Overall just O(n).

57/110

Nested Loops — quadratic complexity

» Simple loops are linear in complexity.
» What about loops that have loops within them?

» Example: determine if one list is subset of second, i.e., every element of first,
appears in second (assume no duplicates).

def isSubset(L1, L2):
for el in L1:
matched = False
for e2 in L2:
if el == e2:

matched = True

break
if not matched:
return False
return True

58 /110

Quadratic Complexity (II)

def isSubset (L1, L2):
for el in L1:
matched = False
for e2 in L2:
if el == e2:
matched = True
break
if not matched:
return False
return True

v

outer loop executed len(L1) times

each iteration will execute inner loop
up to len(L2) times, with constant
number of operations
0(len(L1)*len(L2))

worst case when L1 and L2 same
length, none of elements of L1 in L2

0(len(L1)?)

59/110

Quadratic Complexity (III)

demo/examplel7.py

Find intersection of two lists, return a list with each element appearing only once!

def intersect(L1, L2):
tmp = []
for el in L1:
for e2 in L2:
if el == e2:
tmp . append (el)
res = []
for e in tmp:
if not(e in res):
res.append(e)
return res

60/110

Quadratic Complexity (V)

demo/examplel7.py

def intersect(Ll, 12): > first nested loop takes

tmp = [] *
for ol in L1 len(L1)*len(L2) steps

for e2 in L2: » second loop takes at most len(L1)

if el == e2: Steps
tmp.append (e1) o - .

res = [] P determining if element in list might
for e in tmp: take len(L1) steps

1f not(e in res): » if we assume lists are of roughly same

res.append(e)
return res length, then 0(len(L1)?)

61/110

O() for nested loops

def g(n):
" gqssume m >= 0 """
x=0
for i in range(n):
for j in range(n):
x+=1
return x

» Computes n? very inefficiently.
» When dealing with nested loops, look at the ranges.
» Nested loops, each iterating n times.

> O(n?)

62/110

Logarithmic Complexity — Bisection example

» Complexity grows as log of size of one of its inputs
» example:
» Bisection search
» binary search of a list
» Bisection search: suppose we want to know if a particular element is present in a
list
» Saw that we could just “walk down” the list, checking each element
» Complexity was linear in length of the list
» Suppose we know that the list is ordered from smallest to largest

» Saw that sequential search was still linear in complexity
» Can we do better?

63/110

Yes we can — Bisection search

1. pick an index, i, that divides list in
half

2. ask if L[i]== e

3. if not, ask if L[i] is larger or smaller
that e

4. Depending on answer, search left or
right half of L for e

We Can Do lt!

» A new version of a divide-and-conquer algorithm

» Break into smaller version of problem (smaller list), plus some simple operations
» Answer to smaller version is answer to original problem.

64/110

Complexity Analysis of Bisection

x5
‘ \l\ e c\e\eﬁ‘e"\ » finish looking through list when

L O oS 1= n/2"

so i=logn

where n is len(L)

1 kée&“‘s » complexity of recursion is O(log n)—

65/110

Bisection Code

demo/examplel7.py

def bisect searchl(L, e}): §§“

. ot
if Lo==[]: ‘oM
return False
; r}-'a““
elif len(L) == 1: dﬁxh
return L[0] == e o N gﬂ*'
o o
else: 0(\5@ ot S
s, ‘\ﬁ W '\35\\
lhalf = len(L)//2 | © o® .
o
if Lihalf] > e: FTTT T I ,gc,o“"@
return bisect_searchl(:L[:halfi, e) | WO
else: Fiiiii: ogﬁ&
return bisect_searchl(:L[half:I, e) ﬁﬁic

66 /110

Complexity of first Bisection Method

Implementation 1 — bisect_searchl (demo/examplel7.py)

» O(log n) bisection search calls

» On each recursive call, size of range to be searched is cut in half

» If original range is of size n, in worst case down to range of size 1 when

n/ (2Vk) = 1; or when k= logn

» O(n) for each bisection search call to copy list

» This is the cost to set up each call, so do this for each level of recursion
» O(log n) * O(n) — O(nlog n)
» |If we are really careful, note that length of list to be copied is also halved on each

recursive call.

» Turns out that total cost to copy is O(n) and this dominates the log n cost due to
the recursive calls.

67/110

An alternative Bisection algorithm

> still reduce size of problem by
' factor of two on each step

but just keep track of low and
high portion of list to be
i searched

» avoid copying the list

» complexity of recursion is
again O(log n) - where n is
len(L)

68/110

Bisection (Il) Code

demo/examplel8.py

def bisect search2(L, e):
def bisect search_helper(L, e, low, high):

if high == low:
return L[low] == e
mid = (low + high)//2
if Limid] == e:
return True o
elif L[mid] > e: O eca\\
if low == mid: #nothing left to search ‘.\5&3“\ 0(9-‘1
return False c© ao(eg
else: 0
return[bisect_search_helper(L, e, low, mid - lﬂ
else:
return| bisect_search_helper(L, e, mid + 1, high)l et
. - AR
if len(L) == 0: a"»“ 5.\\19,
return False dﬁﬁﬂ(eoﬁ
else: e
return bisect search helper(L, e, 0, len(L) - 1)

69 /110

Algorithmic Complexity — Bisect ||

demo/examplel8.py

» Implementation 2 — bisect_search2 and its helper
» O(log n) bisection search calls
» On each recursive call, size of range to be searched is cut in half if original range is
of size n, in worst case down to range of size 1 when n/ (2X) = 1; or when k= logn
» Pass list and indices as parameters

» list never copied, just re-passed as a pointer
» Thus O(1) work on each recursive call
» O(log n)*O(1) — O(log n)

70/110

Exponential Complexity

» Recursive functions where more than one recursive call for each size of problem
» Towers of Hanoi
» Many important problems are inherently exponential

» Unfortunately, as cost can be high will lead us to consider approximate solutions as
may provide reasonable answer more quickly.

71/110

Towers of Hanoi

https://en.wikipedia.org/wiki/Tower_of_Hanoi

» The Tower of Hanoi is a mathematical game or puzzle.

» It consists of three rods and a number of disks of different sizes, which can slide
onto any rod.

» The puzzle starts with the disks in a neat stack in ascending order of size on one

rod,

the smallest at the top.

» The objective of the puzzle is to move the entire stack to another rod, obeying
the following simple rules:

1.
2.

@

Only one disk can be moved at a time.

Each move consists of taking the upper disk from one of the stacks and placing it on
top of another stack or on an empty rod.

No larger disk may be placed on top of a smaller disk.

With 3 disks, the puzzle can be solved in 7 moves.

The minimal number of moves required to solve a Tower of Hanoi puzzle is 2" — 1,
where n is the number of disks.

72/110

https://en.wikipedia.org/wiki/Tower_of_Hanoi

Towers of Hanoi

Let's watch the animation at https://en.wikipedia.org/wiki/Tower_of _Hanoi

73/110

https://en.wikipedia.org/wiki/Tower_of_Hanoi

lterative solution

» A simple solution for the toy puzzle is to alternate moves between the smallest
piece and a non-smallest piece.

» When moving the smallest piece, always move it to the next position in the same
direction (to the right if the starting number of pieces is even, to the left if the
starting number of pieces is odd).

» If there is no tower position in the chosen direction, move the piece to the
opposite end, but then continue to move in the correct direction.

» For example, if you started with three pieces, you would move the smallest piece
to the opposite end, then continue in the left direction after that.

» When the turn is to move the non-smallest piece, there is only one legal move.

» Doing this will complete the puzzle in the fewest moves.

74 /110

Code

demo/example20.py

def moveTower (height,fromPole, toPole, withPole):
if height >= 1:
moveTower (height-1,fromPole,withPole,toPole)
moveDisk(fromPole,toPole)

moveTower (height-1,withPole,toPole,fromPole)
def moveDisk(fp,tp):

print ("moving disk from",fp,"to",tp) o e

no_of_disks = 5
moveTower (no_of _disks,"A","B","C")

75/110

Towers of Hanoi — Complexity

Let t, denote time to solve tower

th=2tp1+1
=22th2+1)+1
=A4tp2+2+1 Geometric growth
=4(2tp3+1)+2+1
P a= 214 4241
okt okl 444241 2a=2"+2"14 . 42
=2t 444241 a=2 -1
=2"-1

so order of growth is O (2")

76 /110

Example: Exponential Complexity

» Given a set of integers (with no repeats), want to generate the collection of all
possible subsets — called the power set.

» {1,2,3,4} would generate

{11 {23, {33, {43, {1, 2}, {1, 3}, {1, 4}, {2,3},{2,4}, {3, 4},
{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}

» Order doesn’t matter — same set as well

{1 ALH 25 {125, {35, {1, 33, {2, 3}, {1, 2, 3}, {4}, {1, 4},
{2,4},{1,2,4},{3,4},{1,3,4},{2,3,4},{1,2,3,4}

77/110

Power Set Concept — Recursively

v

We want to generate the power set of integers from 1 to n
Assume we can generate power set of integers from 1 to n— 1.

Then all of those subsets belong to bigger power set (choosing not include n);
and all of those subsets with n added to each of them also belong to the bigger
power set (choosing to include n).

{h A1, {28 {1, 23, {3}, {1, 3}, {2,3}, {1, 2,3}, {4}, {1,4}, {2, 4},
{1,2,4},{3,4},{1,3,4},{2,3,4},{1,2,3,4}

Nice recursive description!

78/110

Exponential Complexity

demo/example2l.py

def genSubsets(L):
res = []
if len(L) ==
return [[]] ##list of empty sets
smaller = genSubsets(L[:-1]1) #all subsets without last element
extra = L[-1:]
new = []
for small in smaller:
new.append(small + extra) #for all smaller sol, add one with last el.
return smaller + new

Ltest = [1,2,3,4,5]
print (genSubsets(Ltest))

79/110

Exponential Complexity (I1)

def genSubsets(L):

res = []

if len(L) == . . .
return L01] P assuming append is constant time

smaller = genSubsets(L[:-1]) » time includes time to solve smaller

extra = L[-1:] problem, plus time needed to make a

new = [] copy of all elements in smaller problem

for small in smaller:
new.append(small + extra)
return smaller + new

80/110

Exponential Complexity (Ill)

def genSubsets(L):

res = []
if len(L) == 0: » but important to think about size of
return [[]] smaller

smaller = genSubsets(L[:-1])

extra = L[-1:]

new = []

for small in smaller: » how can we deduce overall complexity?
new.append(small + extra)

return smaller + new

» know that for a set of size k there are
2k cases

81/110

Exponential Complexity (1V)

» let t, denote time to solve problem of size n

» let s, denote size of solution for problem of size n

» t,=tp_1+ Sp—1 + ¢ (where c is some constant number of operations)
th=tp1+2" 4 c
=ty o +2" 2 fc+2" ¢
=t + 2K 2" 4 ke Thus computing power set is O(2")
—to+2°+...+2" 4 nc
=1+2"+4+nc

82/110

Analyze lterative Fibonacci for Complexity

demo/example22.py, demo/example2l.py

def

fib_iter(n):

= Best case:
0(1)
= Worst case:
O(1) + O(n) + O(1) =» O(n)

if n ==
return 0 >
oL
elif n == dﬁx}
return 1 o
else: X
W
fib i = 0 N
£fib ii = 1 oM
for 1 1in range(n-1):
tmp = fib i
fib i = fib ii

fib_ii =

“wgﬁ

tmp + fib ii o

return fib_ii |

Fo=0,
n—1+ Fn—2a

Fp=

ok
X
e
O

OQD

Fi=1,

for n > 1.

83/110

Analyze Recursive Fibonacci for Complexity

demo/example23.py

def fib_recur(n):
' assumes n an int >= 0 """
if n ==
return 0
elif n ==
return 1

else:
return fib recur(n-1) + fib recur(n-2) 2
1

®" Worst case:
0(2")

84 /110

Analyze recursive Fibonacci for Complexity (I1)

» Actually can do a bit better than 2" since tree of cases thins out to right.

» But complexity is still exponential.

£ib (5)
\

fib (4) fib (3)

~ \

fib (3 fib(2) fib(2) fib (1)

i
N

fib(2) (1)

85/110

Complexity of some Python functions

Lists: n is len(L)

| 2

VVyVYVYyVVYVYVYY

index — 0(1)
store — 0(1)
length — 0(1)
append — 0(1)
== —0(n)
remove — 0(n)
copy — 0(n)
reverse — 0(n)
iteration — 0(n)
in list — 0(n)

Dictionaries: n is 1len(L)
Worst case:

» index — 0(n)

» store — 0(n)

» length — 0(n)
» delete — 0(n)

P iteration — 0(n)

Average case:

> index — 0(1)

» store — 0(1)

> delete — 0(1)

» iteration — 0(n)

86 /110

3. Some useful Libraries in Python

1. Numpy

2. Scipy

3. Matplotlib
4. Pandas

5. JAX

NumPy, SciPy, Matplotlib, Pandas, JAX...

Top Python Data Science Libraries

Python and Libraries

Pandas

If we use Python in combination with its Matplotlib
modules

» NumPy
» SciPy

» Matplotlib
» Pandas
> JAX

it belongs to the top numerical
programming languages.

89/110

Do not re-invent the wheel — NumPy

NumPy is a package for linear algebra and advanced
mathematics in Python.

It provides a fast implementation of multidimensional
numerical arrays (C/FORTRAN like), vectors,
matrices, tensors and operations on them.

Use it if: you long for MATLAB core features.

See also: http://www.numpy.org/

90/110

Do not re-invent the wheel — SciPy

“SciPy is open-source software for mathematics,
science, and engineering. [...] The SciPy library
provides many user-friendly and efficient numerical
routines such as routines for numerical integration
and optimization.”

One of its main aim is to provide a reimplementation
of the MATLAB toolboxes.

Use it if: you long for MATLAB toolbox features.

See also: hitp://www.scipy.org/

91/110

Do not re-invent the wheel — Matplotlib

matplotlib "is a python 2D plotting library which
produces publication quality figures in a variety of
hardcopy formats and interactive environments across
platforms. matplotlib can be used in python scripts,
the python and ipython shell (ala MATLAB® or
Mathematica®), web application servers, and six
graphical user interface toolkits.”

92/110

Pandas

Pandas is a Python data analysis library, that provides
optimized routines for analyzing 2D, 3D, 4D data.

“Pandas [.. .| enables you to carry out your entire data
analysis workflow in Python without having to switch
to a more domain specific language like R.”

Use it if: you need features from R, plyr, reshape?.

93/110

Simple Examples

Let's have a look at the Jupyter Notebook
Lecture_5b.ipynb

94 /110

Numpy Example: Poisson equation

» Consider)))
Vu—Au—au ?9y2 8 —fxEQDomaln

» with boundary condition
u= g,x € 00QBoundary of domain

» Model useful in: heat conduction, electromagnetism, astrophysics (gravity), fluid
dynamics, ...

» Simplest example of an elliptic Partial Differential Equation (PDE)

95/110

Numpy Example: Poisson equation

i 2, 9u 2u _
» Consider Vu—ax2+8y2—f

» on the square domain

==

96 /110

Example: Poisson equation (1)

» Finite differences

» discretize square domain

Pu_

=f

97 /110

Example: Poisson equation (V)

» Finite differences

Pu 0%u
Viu=—5+_——>=f
"ok T oy
V2u %U(Xl”rlvyj) — 2U(Xi’ yj) + “(Xiflayj)
AX2
+ U(Xf’ yj+1) — 2U(Xi7 y.l) + U(Xiv yjfl)
Ay?
= f(u(xi, ;) -
» discretize square domain
Az
$ By
J
y
L} T 1

98/110

Example: Poisson equation (V)

» Finite differences

2~ Uil T 2uij + Ui-1, | Ui~ 2uij+ Uij-1
u Ax2 Ay2 — i

» discretize square domain

<
)
./

99/110

Jacobi-Method

» Jacobi-method

1
uj = 202+ AP) [(ury+ uiag) Y + (1 + uljor) A = FiACAY

» Discretized square domain

iterate ...

] e
J N\

==

100/ 110

Poisson Equation

n+1 _ 1

YT 202+ AYP)

[(ulqi-l,j + u?—l,j) Ay2 + (U,r‘jj_;_]_ + U,(Zj_]_) AX2 — f;JAXZAyz]

def update(u,dx,dy):
[nx,ny] = u.shape
dx2 = dx**2
dy2 = dy**2
u_old = np.copy(u)
for i in range(l,nx-1):
for j in range(l, ny-1):
ufi,j] = ((u old[i+l,j] + u_ old[i-1,37])*dy2 \
+ (u_old[i ,3j+1] + u_old[i ,j-1])*dx2) \
/(2% (dx2 + dy2))

101/110

Poisson Equation

Compare implementations (vectorized):

n 1 n
“ifl = 32 AP [(ufpr+ uf 1) DY + (U + ufi 1) D — AL DY)

def update(u,dx,dy):
dx2 = dx**2
dy2 = dy**2
u_old = np.copy(u)
ufls-1,1:-1] = { (u_old[2:,1:-1] + u_old[:-2,1:z-1])*dy2 \
+ (u old[l:-1,2:] + u old[l:-1,:-2])*dx2) \
/(2% (dx2 + dy2))

102/ 110

Nonlinear equations & optimization.

» Our course heavily relies on solving large systems of nonlinear equations or
(un-)constrained optimization problems.

» — In Python, you have plenty of options, e.g.:
» SciPy.org

» PyOpt.org

» IPOPT (https://www.coin-or.org/lpopt;
https://github.com/xuy/pyipopt)

103 /110

https://www.coin-or.org/lpopt
https://github.com/xuy/pyipopt

Constrained optimization with SciPy

The minimize function also provides an interface to several constrained minimization
algorithm.

As an example, the Sequential Least SQuares Programming optimization algorithm
(SLSQP) will be considered here.

This algorithm allows to deal with constrained minimization problems of the form:

min F(x)
subject to Cj(X) =0, j=1,..., MEQ
G(x) >0, j= MEQ +1,....M
XL< x< XU, I=1,...,N.

104 /110

Constrained optimization — example

As an example, let us consider the problem of optimizing the function:
f(x,y) = 2xy + 2x- X2 - 22
subject to an equality and an inequality constraints defined as:

X —y=0
y—1>0

105 /110

Root finding (nonlinear equations)

» Finding a root of a set of non-linear equations can be achieve using the root
function.

» Several methods are available, amongst which hybr (the default) and 1m which
respectively use the hybrid method of Powell and the LevenbergMarquardt
method from MINPACK.

» Consider a set of non-linear equations
xp cos (x1) = 4,

XoX1 — X1 = b.

106 /110

Example for Nonlinear Equations

import numpy as np
from scipy.optimize import root

def func2(x):
f = [x[0] * np.cos(x[1]) - 4, x[1]*x[0] - x[1] - 5]

df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1]1)], [x[1], x[0] - 111)
return f, df

sol = root(func2, [1, 1], jac=True, method='lm')
solution = sol.x

print("the solution of this nonlinear set of equations is: ", solution)

107 /110

Want more?

Find, install and publish Python packages
with the Python Package Index

PyPl is the index of Python software
packages. It currently indexes 506,250
packages, so the choice is really vast. Orrossepiacs

Almost all packages can be installed with a
single command by running pip install
packagename.

506,250 projects 5,261,717 releases 10,032,052files 774,493 users

The Python Package Index (PyPI) is a repository of software for the

pgthon Python programming language.

Package PyPI helps you find and install software developed and shared by the Python
(\’ Index community. Learn about installing packages .

Package authors use PyP! to distribute their software. Learn how to package your
Python code for PyPI 5.

108 /110

How to tackle a complete project in python

» The examples so far were quite compact and composed to convey programming
constructs in a gentle pedagogical way.

» Now, the idea is to solve a more comprehensive real-world problem by
programming.

» The problem solving process in this example gets quite involved.

» How to proceed:

1.

kw0

Problem Statement

Derivation of the Algorithm
Program Development and Testing
Verification

Visualization

109/110

Questions for today?

