
Data Science and Advanced Programming — Lecture 6b
Python Fundamentals III

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

October 20th, 2025 | 12:30 - 16:00 | Internef 263

1 / 26

Object Oriented Programming
https://python-textbok.readthedocs.io/en/latest/Object_Oriented_Programming.html

1 / 26

Object Oriented Programming
https://python-textbok.readthedocs.io/en/latest/Object_Oriented_Programming.html

▶ Python supports many different kinds of data
▶ Each of those is an object, and every object has:

▶ A type
▶ An internal data representation (primitive or composite)
▶ A set of procedures for interaction with the object

▶ An object is an instance of a type
▶ 1234 is an instance of an int
▶ ”hello” is an instance of a string

2 / 26

Object-oriented programming (OOP)

▶ EVERYTHING IN PYTHON IS AN OBJECT (and has a type).
▶ You can create new objects of some type.
▶ You can manipulate objects (e.g., append an item to a list, concatenate 2 lists,

etc.).
▶ You can destroy objects.

▶ explicitly using del or just “forget” about them (e.g., delete elements from a list)
▶ The Python system will reclaim destroyed or inaccessible objects — called “garbage

collection”

3 / 26

What are Objects in Programming? → ”Blueprints”

Objects are a data abstraction that captures:
1. An internal representation:

▶ through data attributes (e.g., what data abstractions
make up an airplane, such as wings, turbines → ”what
data represents the plane”)

2. An interface for
▶ interacting with object (e.g., plane starts, lands, color of

plane)
▶ through methods (aka procedures/functions)
▶ defining behaviors but hides implementation

4 / 26

An example – an object of type List
▶ [1,2,3,4] has type list (how is a list represented; how can you interact/what

sort of operations are allowed)
▶ how are lists represented internally? linked list of cells:

▶ how to manipulate lists
▶ L[i], L[i:j], +
▶ len(), min(), max(), del(L[i])
▶ L.append(), L.extend(), L.count(), L.index(), L.insert(), L.pop(),

L.remove(), L.reverse(), L.sort()
▶ internal representation should be private
▶ correct behavior may be compromised if you manipulate internal representation

directly

5 / 26

The benefits of OOP

▶ bundle data into packages together with procedures that work on them through
well-defined interfaces.

▶ divide-and-conquer development
▶ implement and test behavior of each class separately.
▶ increased modularity reduces complexity.

▶ classes make it easy to reuse code
▶ many Python modules define new classes.
▶ each class has a separate environment (no collision on function names).
▶ inheritance allows subclasses to redefine or extend a selected subset of a superclass’

behavior.

6 / 26

Creating and using your own Types with Classes

▶ make a distinction between creating a class and using an instance of the class.
▶ creating the class involves

▶ defining the class name.
▶ defining class attributes.
▶ for example, someone wrote code to implement a list class.

▶ using the class involves
▶ creating new instances of objects.
▶ doing operations on the instances.
▶ for example, L=[1,2] and len(L).

7 / 26

How to define your own Types
▶ use the class keyword to define a new type:

▶ similar to def, indent code to indicate which statements are part of the class
definition

▶ the word object means that Coordinate is a Python object and inherits all its
attributes (inheritance follows later in this course)

▶ Coordinate is a subclass of object
▶ object is a superclass of Coordinate

8 / 26

Attributes — data and procedures

▶ Attributes are data and procedures that “belong” to the class
▶ data attributes

▶ think of data as other objects that make up the class
▶ for example, a coordinate is made up of two numbers

▶ methods (procedural attributes)
▶ think of methods as functions that only work with this class
▶ how to interact with the object
▶ for example you can define a distance between two coordinate objects but there is no

meaning to a distance between two list objects

9 / 26

How to create an instance of a class

▶ first have to define how to create an instance of an object
▶ use a special method called __init__ to initialize some data attributes

10 / 26

Creating an instance of a class

▶ Data attributes of an instance are called instance variables.
▶ Don’t provide argument for self, Python does this automatically.

11 / 26

What is a method?

▶ Procedural attribute, like a function that works only with this class.
▶ Python always passes the object as the first argument

▶ convention is to use self as the name of the first argument of all methods.
▶ the “.” operator is used to access any attribute

▶ a data attribute of an object.
▶ a method of an object.

12 / 26

Let’s define a Method for the ”Coordinate” class

▶ other than self and dot notation, methods behave just like functions (take
parameters, do operations, return)

13 / 26

How to use a Method

14 / 26

How to use a Method
See demo/example1.py

15 / 26

Print representation of an object
See demo/example1.py

>>> c = Coordinate(3,4)
>>> print(c)
<__main__.Coordinate object at 0x7fa918510488>

▶ Uninformative print representation by default.
▶ Define a __str__ method for a class.
▶ Python calls the __str__ method when used with print on your class object.
▶ you choose what it does! Say that when we print a Coordinate object, want to

show.

>>> print(c)
<3,4>

16 / 26

Define your own print method

17 / 26

Wrap our heads around Types and Classes
▶ can ask for the type of an object instance

▶ this makes sense since

▶ use isinstance() to check if an object is a Coordinate

18 / 26

Special Operators

X + Y =?

X − Y =?

→ We need to define such operations!

19 / 26

Special Operators

▶ +, -, ==, <, >, len(), print, and many others
▶ https:

//docs.python.org/3/reference/datamodel.html#basiccustomization
▶ Like print, can override these to work with your class.
▶ Define them with double underscores before/after (e.g.)

20 / 26

https://docs.python.org/3/reference/datamodel.html#basiccustomization
https://docs.python.org/3/reference/datamodel.html#basiccustomization

An example: Fractions
demo/example2.py

▶ Create a new type to represent a number as a fraction.
▶ internal representation is two integers (not floats here → note the assert!).

▶ Numerator.
▶ Denominator.

▶ Interface a.k.a. methods a.k.a how to interact with Fraction objects
▶ add, subtract.
▶ print representation, convert to a float.
▶ invert the fraction.

▶ Let’s have a look at the code together!

21 / 26

A Fraction Object
demo/example2.py

class Fraction(object):
"""
A number represented as a fraction
"""
def __init__(self, num, denom):

""" num and denom are integers """
assert type(num) == int and type(denom) == int, "ints not used"
self.num = num
self.denom = denom

def __str__(self):
""" Returns a string representation of self """
return str(self.num) + "/" + str(self.denom)

def __add__(self, other):
""" Returns a new fraction representing the addition """
top = self.num*other.denom + self.denom*other.num
bott = self.denom*other.denom
return Fraction(top, bott)

def __sub__(self, other):
""" Returns a new fraction representing the subtraction """
top = self.num*other.denom - self.denom*other.num
bott = self.denom*other.denom
return Fraction(top, bott)

def __float__(self):
""" Returns a float value of the fraction """
return self.num/self.denom

def inverse(self):
""" Returns a new fraction representing 1/self """
return Fraction(self.denom, self.num)

22 / 26

Another example — a set of integers as class
demo/example3.py

class intSet(object):
"""
An intSet is a set of integers
The value is represented by a list of ints, self.vals
Each int in the set occurs in self.vals exactly once
"""
def __init__(self):

""" Create an empty set of integers """
self.vals = []

def insert(self, e):
""" Assumes e is an integer and inserts e into self """
if not e in self.vals:

self.vals.append(e)
def member(self, e):

""" Assumes e is an integer
Returns True if e is in self, and False otherwise """
return e in self.vals

def remove(self, e):
""" Assumes e is an integer and removes e from self
Raises ValueError if e is not in self """
try:

self.vals.remove(e)
except:

raise ValueError(str(e) + ' not found')
def __str__(self):

""" Returns a string representation of self """
self.vals.sort()
return '{' + ','.join([str(e) for e in self.vals]) + '}'

23 / 26

The usefulness of OOP

▶ bundle together objects that share
▶ common attributes and
▶ procedures that operate on those attributes

▶ use abstraction to make a distinction between how to implement an object vs how
to use the object

▶ Build layers of object abstractions that inherit behaviors from other classes of
objects.

▶ Create our own classes of objects on top of Python’s basic classes.

24 / 26

Action Required — write your first Class

▶ Write an own class called Circle
▶ The class should:
▶ Take as an input the radius of the

Circle
▶ Have a method to compute the Area

of the circle: A = π ∗ r2

▶ Have a method to compute the
circumference of circle, S = 2 ∗ π ∗ r

▶ Compute the ratios of the
circumference and Surface for a circle
with a different radius (recall: other)

25 / 26

Questions for today?

26 / 26

