
Data Science and Advanced Programming — Lecture 4
Python Fundamentals II

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

October 6th, 2025 | 12:30 - 16:00 | Internef 263

x

1 / 86

Roadmap

1. Functions
2. Lists, Tuples, Dictionaries
3. Recursions

1 / 86

1. Functions

2 / 86

How we learned to code so far

▶ Until now:
▶ We have covered language mechanisms.
▶ We know how to write different files for each computation.
▶ We consider each file to be some piece of code.
▶ We assume that each code is a sequence of instructions.

▶ Problems with this approach:
▶ It is easy for small-scale problems.
▶ However, it’s messy for larger problems.
▶ It’s hard to keep track of details.
▶ How do you know the right info is supplied to the right part of code?

:

3 / 86

Good programming practice

▶ More code is not necessarily a good thing.
▶ Measure good programmers by the amount of functionality

▶ → Introduce functions.
▶ → Mechanism to achieve decomposition and abstraction.
▶ → Recycling.

4 / 86

Decomposition (generating a joint output)

5 / 86

Functions

▶ In programming, it is useful to divide the code into modules that
▶ are self-contained
▶ used to break up code
▶ intended to be reusable
▶ keep code organized
▶ keep code coherent

▶ Today: in this lecture, achieve decomposition with functions
▶ Later: achieve decomposition also with classes

6 / 86

Functions → Abstractions

▶ In programming, think of a piece of code as a black box.
▶ do not (always) need to see details.
▶ do not (always) want to see details.
▶ hide tedious coding details.

→ achieve abstraction with function specifications or docstrings.

7 / 86

The Purpose of Functions

▶ write reusable pieces/chunks of code, called functions.
▶ functions are not run in a program until they are “called’‘ or “invoked” in a

program.
▶ function characteristics:

▶ has a name
▶ has parameters (0 or more)
▶ has a docstring (optional but recommended → allows re-use)
▶ has a body
▶ returns something

8 / 86

Example: Fibonacci Sequence
https://en.wikipedia.org/wiki/Fibonacci_number

F0 = 0,F1 = 1,
Fn = Fn−1 + Fn−2,

for n > 1
One has F2 = 1

9 / 86

https://en.wikipedia.org/wiki/Fibonacci_number

Functions: Definition I
demo/example_1.py

10 / 86

Functions: Definition II
demo/example_1.py

11 / 86

How to call Functions (from Terminal)
demo/example_1.py

>>> import example_1
('fib(5) =', 5)
>>> example_1.fib(3)
2

12 / 86

How to call Functions
demo/example_1.py

def fib(n):
"""Returns the nth Fibonacci number."""
a = 0
b = 1
for i in range(n):
tmp = a
a = a + b
b = tmp

return a
print("function call from the original Function -- fib(7) =",fib(7))
print(fib(10))
print(fib(20))

13 / 86

How to call Functions from another File
demo/example_1b.py

#import the function to be present
import example_1 as ex
#call the function
print("Function call from another code: fib(5) =", ex.fib(5))

14 / 86

Variable Scope
▶ formal parameter gets bound to the value of actual parameter when function is

called
▶ new scope/frame/environment created when enter a function
▶ scope is mapping of names to objects

15 / 86

Variable Scope II
See https://www.manning.com/books/get-programming

def f(x):
x = x + 1
print('in f(x): x =', x)
return x

x = 3
z = f(x)

16 / 86

https://www.manning.com/books/get-programming

Variable Scope III
See https://www.manning.com/books/get-programming

def f(x):
x = x + 1
print('in f(x): x =', x)
return x

x = 3
z = f(x)

17 / 86

https://www.manning.com/books/get-programming

Variable Scope IV
See https://www.manning.com/books/get-programming

def f(x):
x = x + 1
print('in f(x): x =', x)
return x

x = 3
z = f(x)

18 / 86

https://www.manning.com/books/get-programming

Variable Scope V
demo/example_2.py

def f(x):
x = x + 1
print('in f(x): x =', x)
return x

x = 3
z = f(x)

19 / 86

More Scope Examples — shows accessing variables
outside scope
demo/example_2b.py

def f(y):
x = 1
x += 1
print(x)

x = 5
f(x)

def g(y):
print(x)
print(x+1)

x = 5
g(x)

def h(y):
pass
#x += 1 #leads to an error without line `global x` inside h

x = 5
h(x)

20 / 86

More on Scope
demo/example_2c.py

def g(x):
def h():

x = 'abc'
print(x)

x = x + 1
print('in g(x): x =', x)
h()
return x

x = 3
z = g(x)

21 / 86

If still uncertain...

!!!Go to Python Tutor!!!
http://www.pythontutor.com/

22 / 86

http://www.pythontutor.com/

More Notes on Functions

▶ Functions always have a return value
▶ Without a return statement the value is simply None

▶ Functions are objects
▶ Can be used like any other object (list of functions, ...)

▶ Function arguments are passed by assignment
▶ More precisely call by object reference

▶ No function overloading
▶ Functions can’t have the same name (even if the number of arguments differ)

▶ Operator overloading works, later...

23 / 86

Once more: NO return STATEMENT
demo/example_3.py

def is_even_without_return(i):
"""
Input: i, a positive int
Does not return anything
"""
print('without return')
remainder = i % 2

is_even_without_return(3)

▶ Python returns the value None, if no return given
▶ represents the absence of a value

24 / 86

Once more: NO return STATEMENT
demo/example_3b.py

def is_even_with_return(i):
"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
print('with return')
remainder = i % 2
return remainder == 0

is_even_with_return(3)
print(is_even_with_return(4))

▶ Python returns the value None, if no return given
▶ represents the absence of a value

25 / 86

Recycling helps — short Code
demo/example_3b.py

Simple is_even function definition
def is_even(i):

"""
Input: i, a positive int
Returns True if i is even, otherwise False
"""
remainder = i % 2
return remainder == 0

Use the is_even function later on in the code
print("All numbers between 0 and 20: even or not")
for i in range(20):

if is_even(i):
print(i, "even")

else:
print(i, "odd")

26 / 86

return vs print

return

▶ return only has meaning inside a
function

▶ only one return executed inside a
function

▶ code inside function but after return
statement not executed

▶ has a value associated with it, given to
function caller

print

▶ print can be used outside functions
▶ can execute many print statements

inside a function
▶ code inside function can be executed

after a print statement
▶ has a value associated with it,

outputted to the console

27 / 86

Functions: arguments such as functions
demo/example_4.py

def func_a():
print('inside func_a')

def func_b(y):
print('inside func_b')
return y

def func_c(z):
print('inside func_c')
return z()

print(func_a())
print(5+func_b(2))
print(func_c(func_a))

Arguments can take on any type, even functions

28 / 86

Functions: lambda expressions

▶ Small anonymous functions can be created with the lambda keyword
▶ Example:

def apply(func,x):
return func(x)

apply(lambda z: z ** 2)

▶ Convenient to define small functions

29 / 86

Lambda Expressions
demo/example_6.py

def apply(func,x):
return func(x)

x = apply(lambda z: z**2,2.)
print(x)

30 / 86

Recall: Coding

Some very important conventions/rules:
▶ Use 4-space indentation
▶ Wrap lines so that they don’t exceed 79 characters
▶ Use blank lines to separate functions and classes, and larger blocks code inside

functions
▶ Use docstrings: documentation
▶ No fancy encodings, even in comments!
▶ PEP8: https://www.python.org/dev/peps/pep-0008/
▶ Read it carefully...

31 / 86

https://www.python.org/dev/peps/pep-0008/

2. Lists, Tuples, Dictionaries

32 / 86

Compound data types

▶ So far, we have seen variable types: int, float, bool,string.
▶ We want now to introduce new compound data types (data types that are made

up of other data types)
▶ Tuples (similar to strings — sequences of something)
▶ Lists (similar to strings — sequences of something)

▶ idea of aliasing
▶ idea of mutability
▶ idea of cloning

33 / 86

Mutable vs. Immutable types

▶ Mutable types
▶ Can change their contents / members
▶ lists, dicts, user-defined types

▶ Immutable types
▶ Cannot change their contents / members
▶ most built-in types (int, float, bool, str, tuple)

34 / 86

Lists

▶ Is an ordered sequence of information, accessible by index
▶ a list is denoted by square brackets, []
▶ a list contains elements
▶ usually homogeneous (i.e., all integers)
▶ can contain mixed types (not common)
▶ list elements can be changed → list is mutable

35 / 86

How to Use Lists
demo/example_9.py

list is built-in
x = [0, 1, 2, 3, 3]

x[2] == 2 # access via [] index operator

x.insert(0, 5) # index, value
x == [5, 0, 1, 2, 3, 3]

remove by index - returns value
x.pop(0) # returns 5
x == [0, 1, 2, 3, 3]

x = [0, 1, 2, 'three'] # can contain arbitrary types!

access from the back with negative indices
x[-2] == 2

36 / 86

More on Lists

adding lists concatenates them
x += [4, 5, 6] # x == [0, 1, 2, 'three', 4, 5, 6]

slicing [start:end + 1]
x[1:4] == [1, 2, 'three']

slicing with a stride [start:end + 1:step]
x[0:7:2] == x[::2] == [0, 2, 4, 6]

reverse slicing
x[-1:0:-2] == [6, 4, 2]
x[::-2] == [6, 4, 2, 0]

37 / 86

Add Elements to a List

▶ add elements to end of list with L.append(element)
▶ mutates the list!

>>> L = [2, 1, 3]
>>> L.append(5)
>>> L
[2, 1, 3, 5]

▶ what is the dot?
▶ lists are Python objects, everything in Python is an object
▶ objects have data
▶ objects have methods and functions

access this information by object_name.do_something()
▶ will learn more about these later very soon!

38 / 86

Add Two or More Lists
demo/example_15a.py

▶ to combine lists together use concatenation, + operator, to give you a new list
▶ mutate list with L.extend(some_list)

L1 = [2,1,3]
L2 = [4,5,6]
L3 = L1 + L2 # L3 is [2,1,3,4,5,6], L1, L2 unchanged
L1.extend([0,6]) # mutated L1 to [2,1,3,0,6]

39 / 86

Remove Elements from a List
demo/example_15.py

▶ delete element at a specific index with del(L[index])
▶ remove a specific element with L.remove(element)
▶ looks for the element and removes it
▶ if element occurs multiple times, removes first occurrence
▶ if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order
L.remove(2) # mutates L = [1,3,6,3,7,0]
L.remove(3) # mutates L = [1,6,3,7,0]
del(L[1]) # mutates L = [1,3,7,0]

40 / 86

Lists in the Memory

▶ Recall: lists are mutable
▶ They behave differently than immutable types
▶ is an object in memory
▶ variable name points to object
▶ any variable pointing to that object is affected

41 / 86

How to Change Elements in a List

▶ Recall that lists are mutable!
▶ Assigning to an element at an index changes the value:

L = [2, 1, 3]
L[1] = 5

▶ L is now [2,5,3], note this is the same object L

42 / 86

Iterating over a List

▶ compute the sum of elements of a list
▶ common pattern, iterate over list elements

total = 0
for i in range(len(L)):

total+=L[i]
print(total)

total = 0
for i in L:

total+=i
print(total)

▶ Please note:
▶ → list elements are indexed 0 to len (L)− 1
▶ → range(n) goes from 0 to n − 1

43 / 86

Iterate over Lists
demo/example_14.py

def sum_elem_method1(L):
total = 0
for i in range(len(L)):

total += L[i]
return total

def sum_elem_method2(L):
total = 0
for i in L:

total += i
return total

print(sum_elem_method1([1,2,3,4,5,6,7]))
print(sum_elem_method2([1,2,3,4]))

44 / 86

http://www.pythontutor.com/
demo/example_16.py

45 / 86

http://www.pythontutor.com/

Cloning a List
demo/example_16.py

46 / 86

Cast Strings to Lists
demo/example_17.py

s = "I<3 cs"
print(list(s))
print(s.split('<'))
L = ['a', 'b', 'c']
print(''.join(L))
print('_'.join(L))

47 / 86

Sort Lists
demo/example_18.py

L=[9,6,0,3]
print(sorted(L))

48 / 86

More on Assignments
demo/example8.py

Be careful!

49 / 86

Passing Function Arguments — no return in function

▶ Consider

def incr(x):
x += 1

x = 0
incr(x)
print(x)

▶ and

def incr_first(x):
x[0] += 1

x = [0, 1, 2]
incr_first(x)
print(x)

▶ 0 — looks like pass by copy
▶ [1,1,2] — looks like pass by

reference

50 / 86

Passing Function Arguments — no return in function

▶ Consider

def incr(x):
x += 1

x = 0
incr(x)
print(x)

▶ and

def incr_first(x):
x[0] += 1

x = [0, 1, 2]
incr_first(x)
print(x)

▶ 0 — looks like pass by copy
▶ [1,1,2] — looks like pass by

reference

50 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

51 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

52 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

53 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

54 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

55 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

56 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

57 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

58 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

59 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

60 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

61 / 86

Passing function arguments: pass by assignment —
no return in function

In Python:
▶ Variables are just names (labels)
▶ Names “bind” to an object when assigned to
▶ Assignment does not copy data

62 / 86

Passing function arguments: pass by assignment —
the code
demo/example_7.py

def incr(x):
x += 1

x = 0
incr(x)
print(x)

def incr_first(x):
x[0] += 1

x = [0,1,2]
incr_first(x)
print(x)

63 / 86

More Built-in types: Tuples

▶ Tuples are more or less like a list but cannot be changed (i.e., are immutable)
▶ Use parentheses instead of brackets
▶ Support similar operations as lists

x=(1,2,3)
x[1]=3 # TypeError!

64 / 86

Tuples
demo/example_10.py

Tuples are an ordered sequence of elements, can mix element types

empty tuple
te = ()

t = (2,"HEC",3)
print(t[0]) #evaluates to 2

a=(2,"HEC",3) + (5,6) # evaluates to (2,"HEC",3,5,6)
b = t[1:2] # slice tuple, evaluates to ("HEC",)
#Note: the extra comma means a tuple with 1 element
c = t[1:3] #slice tuple, evaluates to ("HEC",3)
print(len(t)) #evaluates to 3
t[1] = 4 #gives an error, cannot modify object

65 / 86

Potential usage of Tuples
demo/example_11.py

Conveniently used to swap more variables (first examples does not work, the second
works):

x = y
y = x

temp = x
x = y
y = temp

(y, x) = (x, y)

Used to return more than one value from a function:

def quotient_and_remainder(x, y):
q = x // y #integer division
r = x % y
return (q, r)

(quot, rem) = quotient_and_remainder(7,6)

66 / 86

Iterate over Tuples
demo/example_13.py

>>> x = [(1,2), (3,4), (5,6)]
>>> for item in x:
... print "A tuple", item
A tuple (1, 2)
A tuple (3, 4)
A tuple (5, 6)
>>> for a, b in x:
... print "First", a, "then", b
First 1 then 2
First 3 then 4
First 5 then 6

67 / 86

More Built-in types: Dictionaries

▶ If we want to manage a data collection of students, we can store information so
far e.g., using separate lists for every info:
names = ['Tom', 'Keith', 'Marry', 'Megan']
grade = [6.0, ' 4.5,5.2,4.9]
course = ['Programming', 'Physics', 'Econometrics', 'Economics']

▶ A separate list for each item
▶ Each list must have the same length
▶ info stored across lists at same index, each index refers to info for a different

person

68 / 86

Multiple Lists

def get_grade(student, name_list, grade_list, course_list):
i = name_list.index(student)
grade = grade_list[i]
course = course_list[i]
return (course, grade)

▶ Messy if have a lot of different info to keep track of
▶ Must maintain many lists and pass them as arguments
▶ Must always index using integers
▶ Must remember to change multiple lists

69 / 86

Basic functionality of Dictionaries
▶ Nice to index item of interest directly (not always int)
▶ Nice to use one data structure, no separate lists

70 / 86

A Dictionary in practice

▶ Store pairs of data
▶ Key
▶ Value

▶ similar to indexing into a list, looks up the key ’Keith’
▶ returns the value associated with Keith
▶ If key isn’t found, you get an error

71 / 86

Some operations on Dictionaries
demo/example_24.py

▶ Add an entry
▶ grades['Freddy'] = 4.9

▶ Test if key in dictionary
▶ 'Tom' in grades → returns True
▶ 'Daniel' in grades → returns False

▶ Delete an entry
▶ del (grade ['Mary'])

72 / 86

Some operations on Dictionaries
demo/example_24.py

▶ Get an iterable that acts like a tuple of all keys
▶ grades.keys() → returns ['Mickey', 'Keith', 'Megan', 'Tom']
▶ Get an iterable that acts like a tuple of all values
▶ grades.values() → returns [5.0, 4.5, 4.9, 6.0]
▶ Order is not guaranteed

73 / 86

Dict — example
demo/example_19.py

x = dict(a=1, b=2, c='three')
x = {'a': 1, 'b': 2, 'c': 'three'}

access via []
x['a'] == 1

creating new entries
any hashable type can be a key
x[1] = 4

accessing keys, values or both
order is not preserved
x.keys() # ['a', 'c', 1, 'b']
x.values() # [1, 'three', 4, 2]
x.items() # [('a', 1), (c, 'three'), (1, 4), ('b', 2)]

74 / 86

Dictionary keys and values
demo/example_24.py

▶ Values
▶ Any type (immutable and mutable)
▶ Can be duplicates
▶ Dictionary values can be lists, even other dictionaries!

▶ Keys
▶ Must be unique
▶ Immutable type (int, float, string, tuple, bool)
▶ actually need an object that is hash-table, but think of as immutable as all

immutable types are hash-table
▶ Be careful with float type as a key
▶ no order to keys or values!

d={4:{1: 0},(1,3): "twelve", 'const':[3.14,2.7,8.44]}

75 / 86

list versus dict

list

▶ ordered sequence of elements
▶ look up elements by an integer index
▶ indices have an order
▶ index is an integer

dict

▶ matches “keys’‘ to “values”
▶ look up one item by another item
▶ no order is guaranteed
▶ key can be any immutable type

76 / 86

Dictionaries — summary

x = dict(a=1, b=2, c='three')
x = {'a': 1, 'b': 2, 'c': 'three'}

access via []
x['a'] == 1

creating new entries
any hashable type can be a key
x[1] = 4

accessing keys, values or both
order is not preserved
x.keys() # ['a', 'c', 1, 'b']
x.values() # [1, 'three', 4, 2]
x.items() # [('a', 1), (c, 'three'), (1, 4), ('b', 2)]

77 / 86

3. Recursion

78 / 86

Recursion

▶ Algorithmically: a way to design solutions to problems by divide-and-conquer or
decrease-and-conquer
▶ Reduce a problem to simpler versions of the same problem.

▶ Semantically: a programming technique where a function calls itself
▶ In programming, the goal is to NOT have infinite recursion

▶ Must have 1 or more base cases that are easy to solve
▶ Must solve the same problem on some other input with the goal of simplifying the

larger problem input.

79 / 86

Iterative algorithms (for loops)
demo/example_20.py

▶ Looping constructs (while and for loops) lead to iterative algorithms.
▶ Can capture computation in a set of state variables that update on each iteration

through loop.

def mult_a(a, b):
result = 0
while b > 0:

result += a
b -= 1

return result

print(mult_a(2,10))

“multiply a*b” is equivalent to “add a to
itself b times”
→ a + a + a + a + . . .+ a

80 / 86

The alternative — a recursive way

demo/example_21.py demo/example_22.py
The recursive step: Think how to reduce the problem to a simpler/smaller version of
same problem
▶ Base case
▶ Keep reducing the problem until we

reach a simple case that can be solved
directly

▶ when b = 1, a ∗ b = a

def factorial(n):
if n == 1:

return 1
else:

return n*factorial(n-1)
print(factorial(10))

a ∗ b = a + a + a + a + . . .+ a (n times)a
= a + a + a + a + . . .+ a (1+ n − 1 times)a
= a + a ∗ (b − 1) recursive reduction

def mult_iter(a, b):
if b == 1:

return a
else:

return a + mult_iter(a, b-1)
print mult_iter(1,10)

81 / 86

What’s going on in factorial?
def fact(n):

if n == 1:
return 1

else:
return n*fact(n-1)

print(fact(4))

82 / 86

Iteration versus Recursion

def factorial_iter(n) :
prod = 1
for i in range(1, n+1):

prod *= i
return prod

def factorial(n):
if n==1:

return 1
else:

return n*factorial(n-1)

▶ recursion may be simpler, more intuitive
▶ recursion may be efficient from programmer’s point of view
▶ recursion may not be efficient from a computer point of view

83 / 86

A famous Example: The Fibonacci sequence

▶ Leonardo of Pisa (aka Fibonacci) modeled the following challenge.
▶ Newborn pairs of rabbits (one female, one male) are put in a pen.
▶ Rabbits mate at the age of one month.
▶ Rabbits have a one-month gestation period.
▶ Assume rabbits never die, and that female always produces one new pair (one

male, one female) every month from its second month on.
▶ → How many female rabbits are there at the end of one year?

84 / 86

Fibonacci Sequence — the code
https://en.wikipedia.org/wiki/Fibonacci_number

def F(n):
if n == 0: return 0
elif n == 1: return 1
else: return F(n-1) + F(n-2)

Fn =


0 if n = 0
1 if n = 1
Fn−1 + Fn−2 if n > 1

startNumber = int(input("Enter the start number here "))
endNumber = int(input("Enter the end number here "))

85 / 86

https://en.wikipedia.org/wiki/Fibonacci_number

Questions?

86 / 86

