Data Science and Advanced Programming — Lecture 4
Python Fundamentals Il

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

October 6th, 2025 | 12:30 - 16:00 | Internef 263

1/86

Roadmap

1. Functions
2. Lists, Tuples, Dictionaries

3. Recursions

1/86

1. Functions

INPUT x
+;
FUNCTION f:

)L

OUTPUT f(x)

2/86

How we learned to code so far

» Until now:
» We have covered language mechanisms.
» We know how to write different files for each computation.
» We consider each file to be some piece of code.
» We assume that each code is a sequence of instructions.

» Problems with this approach:
» |t is easy for small-scale problems.
» However, it's messy for larger problems.
» It's hard to keep track of details.
» How do you know the right info is supplied to the right part of code?

3/86

Good programming practice

» More code is not necessarily a good thing.

» Measure good programmers by the amount of functionality

» — Introduce functions.
» — Mechanism to achieve decomposition and abstraction.
» — Recycling.

4/86

Decomposition (generating a joint output)

5/86

Functions

» In programming, it is useful to divide the code into modules that
» are self-contained
» used to break up code
» intended to be reusable
» keep code organized
» keep code coherent

» Today: in this lecture, achieve decomposition with functions

» Later: achieve decomposition also with classes

6/86

Functions — Abstractions

» In programming, think of a piece of code as a black box.
» do not (always) need to see details.
» do not (always) want to see details.

» hide tedious coding details.
— achieve abstraction with function specifications or docstrings.

7/86

The Purpose of Functions

» write reusable pieces/chunks of code, called functions.

» functions are not run in a program until they are “called’* or “invoked” in a
program.
» function characteristics:
» has a name
» has parameters (0 or more)
» has a docstring (optional but recommended — allows re-use)
» has a body
» returns something

8/86

Example: Fibonacci Sequence

https://en.wikipedia.org/wiki/Fibonacci_number

Fn: n—1+Fn—27

forn>1
One has F, =1 ﬁﬁ

.ITI.
Fo=0,F =1, }{
o

9/86

https://en.wikipedia.org/wiki/Fibonacci_number

Functions: Definition |

demo/example_1.py

Function name
Function definition begins

with de f Function arguments

N

def fib(n):
“"'‘Returns the nth Fibonacci number. """

a=2>0
b=1
for i in range(n):

tmp = a

a=a+hb

b = tmp
return a

N

Return statement (here we return a!)

Documentation string
(aka docstring)

10/86

Functions: Definition Il

demo/example_1.py

Function name
Function definition begins

with def Function arguments

def fib(n):
"""Returns the nth Fibonacci number. "*”

a=2=0
b=1
for i in range(n):

tmp = a

a=a+b

b = tmp
return a

~More Stué\

Return statement (here we return al)

Documentation string
(aka docstring)

11/86

How to call Functions (from Terminal)

demo/example_1.py

>>> import example_1
('fib(5) =', 5)

>>> example_1.fib(3)
2

12/86

How to call Functions

demo/example_1.py

def fib(n):
"""Returns the nth Fibonacci number."""
a=20
b=1
for i in range(n):
tmp = a
a=a+b
b = tmp
return a
print ("function call from the original Function -- £ib(7) =",fib(7))
print (£ib(10))
print (£ib(20))

13/86

How to call Functions from another File

demo/example_1b.py

#import the function to be present

import example_1 as ex

#call the function

print ("Function call from another code: fib(5) =", ex.fib(5))

| import example_1
('function call from the original Function -- fib(5) =

2 help{example_1.fib)

Help on function fib in module example_1:
—_—

or | in Terminal il
r:import in Termina Returns the nth Fibonacci number.
and call help

14/86

Variable Scope

» formal parameter gets bound to the value of actual parameter when function is

called

» new scope/frame/environment created when enter a function

» scope is mapping of names to objects

def

(s

&0‘6\ e\e(

= x + 1

prlnt('ln fix):

return x

r(.

t}‘)

e\e

X

N
c’ﬁ‘o‘\
Q\“\ _{\0(\
e
1
(‘06 D \‘3{\ e
J @%famq‘o‘-‘% ,a\\"\'_o <0
N
- @e\“va\'\@s ‘-\r}‘o p\’\u"‘r‘
Y
| *‘“\\a 65?2
PR ALY
J *355\%0

15/86

Variable Scope ||

See https://www.manning.com/books/get-programming

Global scope

def f(x):
x = x+ 1 "
print('in f(x): x =', x)
return x

x =3

z = f(x)

16/86

https://www.manning.com/books/get-programming

Variable Scope IlI

See https://www.manning.com/books/get-programming

Global scope

def f(x): - - Some
X =X
code
print('in f(x): x =', %)
return x
x =3
z = f(x)

f scope

x _

17/86

https://www.manning.com/books/get-programming

Variable Scope |V

See https://www.manning.com/books/get-programming

Global scope

def f(x):
x=x+1
print('in f(x): x =', x)

f Some
code

return x
x =3
z = f(x)

f scope

18/86

https://www.manning.com/books/get-programming

Variable Scope V

demo/example_2.py

def

N
I

f(x):

x =x + 1

print('in f(x): x =', %)
return x

3

f(x)

Global scope

f

Some
code

19/86

More Scope Examples — shows accessing variables
outside scope

demo/example_2b.py

def f£(y):
x =1
x += 1
print (x)
X =5
f(x)

def g(y):
print(x)
print(x+1)

x=5

g(x)

def h(y):

pass

#x += 1 #leads to an error without line “global = inside h
x =5
h(x)

20/386

More on Scope

demo/example_2c.py

def g(x):
def h():
x = 'abc'
print(x)
x=x+1
print('in g(x): x =', x)
h()

return x

x =3
z = g(x)

21/386

If still uncertain...

I11Go to Python Tutor!!!
http://www.pythontutor.com/

22/86

http://www.pythontutor.com/

More Notes on Functions

» Functions always have a return value
» Without a return statement the value is simply None
» Functions are objects
» Can be used like any other object (list of functions, ...)
» Function arguments are passed by assignment
» More precisely call by object reference
» No function overloading
» Functions can’t have the same name (even if the number of arguments differ)

» Operator overloading works, later...

23/86

Once more: NO return STATEMENT

demo/example_3.py

def is_even_without_return(i):
nnn

Input: %, a postitive int

Does mot return anything
nunn

print ('without return')
remainder = i 7, 2

is_even_without_return(3)

» Python returns the value None, if no return given

» represents the absence of a value

24 /86

Once more: NO return STATEMENT

demo/example_3b.py

def is_even_with_return(i):

mwmn

Input: 2, a positive int
Returns True i1f © is even, otherwise False

mwmn

print('with return')
remainder = i 2
return remainder == 0

is_even_with_return(3)
print(is_even_with_return(4))

» Python returns the value None, if no return given

» represents the absence of a value

25 /86

Recycling helps — short Code

demo/example_3b.py

Simple ts_even function definition
def is_even(i):
nmunn
Input: ©, a positive int
Returns True i1f % ts even, otherwise False

mwmn

remainder = i 2
return remainder ==

Use the ts_even function later on in the code
print("All numbers between O and 20: even or not")
for i in range(20):
if is_even(i):
print(i, "even")
else:
print(i, "odd")

26/86

return vs print

return

» return only has meaning inside a
function

» only one return executed inside a
function

» code inside function but after return
statement not executed

» has a value associated with it, given to
function caller

v

print

print can be used outside functions

can execute many print statements
inside a function

code inside function can be executed
after a print statement

has a value associated with it,
outputted to the console

27 /86

Functions: arguments such as functions

demo/example_4.py

def func_a():
print('inside func_a')

def func_b(y):
print('inside func_b')
return y

def func_c(z):
print('inside func_c')
return z()

print (func_a())

print (5+func_b(2))
print (func_c(func_a))

Arguments can take on any type, even functions

28/86

Functions: lambda expressions

» Small anonymous functions can be created with the lambda keyword
» Example:

def apply(func,x):
return func(x)
apply(lambda z: z **x 2)

» Convenient to define small functions

F = lambda a,b: a - b

Corresponds to
P T

Arguments Return get Bl
return a - b

F{l,0.5) # 0.5

29/386

Lambda Expressions

demo/example_6.py

def apply(func,x):
return func(x)

x = apply(lambda z: z**2,2.)
print(x)

30/386

Recall: Coding

Some very important conventions/rules:
» Use 4-space indentation
» Wrap lines so that they don't exceed 79 characters

» Use blank lines to separate functions and classes, and larger blocks code inside
functions

Use docstrings: documentation
No fancy encodings, even in comments!
PEP8: https://www.python.org/dev/peps/pep-0008/

vVvyYyy

Read it carefully...

31/86

https://www.python.org/dev/peps/pep-0008/

2. Lists, Tuples, Dictionaries

www.stevenjameskeathley.etsy.com

[T |

4

32/86

Compound data types

v

So far, we have seen variable types: int, float, bool,string.

We want now to introduce new compound data types (data types that are made
up of other data types)

» Tuples (similar to strings — sequences of something)
» Lists (similar to strings — sequences of something)

idea of aliasing
idea of mutability

idea of cloning

33/86

Mutable vs. Immutable types

» Mutable types

» Can change their contents / members
» lists, dicts, user-defined types

» Immutable types

» Cannot change their contents / members
» most built-in types (int, float, bool, str, tuple)

34/86

Lists

Is an ordered sequence of information, accessible by index
a list is denoted by square brackets, []

a list contains elements

usually homogeneous (i.e., all integers)

can contain mixed types (not common)

vVvvyVvYvyy

list elements can be changed — list is mutable

35/86

How to Use Lists

demo/example_9.py

list is built-in
x = [0, 1, 2, 3, 3]

x[2] == 2 # access via [] index operator

.insert (0, 5) # index, wvalue
z == [5, 0, 1, 2, 3, 3]

M

remove by indexr - returns value
.pop(0) # returns 5
z == [0, 1, 2, 3, 3]

M

x = [0, 1, 2, 'three']l # can contain arbitrary types!

access from the back with negative indices
x[-2] ==

36/86

More on Lists

adding lists concatenates them
x += [4, 5, 6] # ¢ == [0, 1, 2, 'three', 4, 5, 6]

slicing [start:end + 1]
x[1:4] == [1, 2, 'three']

slicing with a stride [start:end + 1:step]
x[0:7:2] == x[::2] == [0, 2, 4, 6]

reverse slicing

x[-1:0:-2] == [6, 4, 2]
x[::-2] == [6, 4, 2, 0]

37/86

Add Elements to a List

» add elements to end of list with L.append(element)
» mutates the list!

>> L = [2, 1, 3]
>>> L.append(5)
>>> L

[2, 1, 3, 5]

» what is the dot?
» lists are Python objects, everything in Python is an object

» objects have data
» objects have methods and functions

access this information by object_name.do_something()

» will learn more about these later very soon!

38/86

Add Two or More Lists

demo/example_15a.py

» to combine lists together use concatenation, + operator, to give you a new list
» mutate list with L.extend(some_1list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 # L3 is [2,1,3,4,5,6], L1, L2 unchanged
L1.extend([0,6]) # mutated L1 to [2,1,3,0,6]

39/86

Remove Elements from a List

demo/example_15.py

delete element at a specific index with del (L[index])
remove a specific element with L.remove (element)
looks for the element and removes it

if element occurs multiple times, removes first occurrence

VVvyVvYVvyy

if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order
L.remove(2) # mutates L = [1,3,6,3,7,0]
L.remove(3) # mutates L [1,6,3,7,0]
del(L[1]) # mutates L [1,3,7,0]

40/86

Lists

vVvyyYvyyvyy

in the Memory

Recall: lists are mutable

They behave differently than immutable types
is an object in memory

variable name points to object

any variable pointing to that object is affected

41/86

How to Change Elements in a List

» Recall that lists are mutable!

» Assigning to an element at an index changes the value:
L=10[2,1, 3]
L[1] =5

» L is now [2,5,3], note this is the same object L

42/86

lterating over a List

» compute the sum of elements of a list

» common pattern, iterate over list elements

total = 0 total = 0

for i in range(len(L)): for i in L:
total+=L[i] total+=i
print(total) print(total)

» Please note:

> — list elements are indexed 0 to len (L) — 1
» — range(n) goes from 0 ton—1

43/86

lterate over Lists

demo/example_14.py

def sum_elem_methodi(L):
total = 0O
for i in range(len(L)):
total += L[i]
return total

def sum_elem_method2(L):
total = O
for i in L:
total += i
return total

print (sum_elem_method1([1,2,3,4,5,6,7]1))
print (sum_elem_method2([1,2,3,4]))

44 /86

http://www.pythontutor.com/

demo/example_16.py

Python 3.11 Print output (drag lower right corner to resize)
known limitations 566
666
a = 666 ['Metallica', 'Iron Maiden', 'Motorhead', 'Kiss'
b=a
: »
print(a) S
int(b
print(b) Frames Objects
heavy = ["Metallica”, "Iron Maiden", "Motorhead"] Global frame list
heavy metal = heavy o 1 2 3
- a | 666 “Metallica” | "Iron Maiden” | "Motorhead” | "Kiss"
b |666
heavy.append(“Kiss")
print{heavy_metal) heavy

Edit this code FELTEE

line that just executed
=+ next line to execute

Done running (8 steps)

45 /86

http://www.pythontutor.com/

Cloning a List

demo/example_16.py

Python 3.11 Print output (drag lower right corner to resize)
known limitations 586
666
a = 666 [*Metallica’, 'Iron Maiden®, *Motorhead']
b=a
print(a) “
int(b
print(b) Frames Objects
heavy = ["Metallica”, "Iron Maiden™, "Motorhead”] Global frame list
heavy_metal = heavy[:] o 2 3
- a | 666 "Hetallica” Iron Maiden” | "Motorhead” | "Kiss"
b | 666
heavy.append(“Kiss")
list
print(heavy_metal) heavy ‘;
Edit this code heavy_metal * | hetallica® | "Iron flaiden” | "Motorhead”

line that just executed
=+ next line to execute

46 /86

Cast Strings to Lists

demo/example_17.py

s = "I<3 cs"
print(list(s))
print(s.split('<"'))
L=1[a', 'p', 'c']
print(''.join(L))
print('_'.join(L))

47/86

Sort Lists

demo/example_18.py

L=[9,6,0,3]
print (sorted(L))

48 /86

More on Assignments

demo/example8.py

Be careful!

x = [0,1,2]

y = x

y[2] = 666

print(x) # /0, 1, 666)
print(y) # /0, 1, 666]

import copy Copy module for clean copies!
x = [0,1,2]

y = copy.copy(x)

¥[2] = 666

print(x) # /0, 1, 2]
print(y) # /0, 1, 666)

x = [0,1,[2,3]]

y = copy.copy(x) Shallow copy
y[2110] = 666

print(x) # /0, 1, [666, 3]}

print(y) # /0, 1, [666, 3]]

x = 10,1,12,3]]

y = copy.deepcopy (x) Deep copy (usually what you want!)
y[2][0] = 666

print(x) # /0, 1, [2 , 3]7

print(y) # /0, I, [666, F/]

49 /86

Passing Function Arguments — no return in function

» Consider

def incr(x):
x += 1

x =0

incr (x)

print(x)

» and

def incr_first(x):
x[0] += 1

x = [0, 1, 2]

incr_first(x)

print (x)

50 /86

Passing Function Arguments — no return in function

» Consider

def incr(x):
x += 1

x =0

incr (x)

print(x)

» and

def incr_first(x):

x[0] += 1
x = [0, 1, 2]
incr_first(x)
print (x)

» 0 — looks like pass by copy

» [1,1,2] — looks like pass by
reference

50 /86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data

Object space

def incr(x):
Local scope X += 1

Global scope , _ /.
iner(x) [:]”"’

print(x)

51/86

Passing function arguments: pass by assignment —

no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data

def incr(x):
Local scope % += 1

Global scope _ |

S

incr(x)
print(x)

Object space

52/86

Passing function arguments: pass by assignment —
no return in function
In Python:
» Variables are just names (labels)

» Names “bind” to an object when assigned to

» Assignment does not copy data

Object space

——l

-

def incr(x):
Local scope X += 1
+1

Global scope , _

B
in;r(x) ./

print(x)

53/86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data

Object space

def incr(x): //——’.
Local scope x += 1 .——"‘
Global scope , _ /.
incr(x) ./
print(x)

54/86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data

Object space

A

Local scope

Global scope

x =10
incr(x) ./

print(x)

55/86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data

Object space

Garbage
collector

-

Local scope

Global scope , _
incr(x) ./

print(x)

56 /86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data
Object space
def incr_first(x):
Local scope X[0] += 1
Globalscope . _ [g,1,2 | , , 1
iner first(x) F

print(x)

57/86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data

Object space

def incr first(x):
Local scope X[0] += 1
Global scope > [’ . 1

x = [0,1,2]
incr first(x) ./

print(x)

58/86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data

Object space

def incr first(x):
Local scope x[0] += 1

Global scope . _ [0,1,2]

g |
incr first(x) .”f

print(x)

59/86

Passing function arguments: pass by assignment —

no return in function

In Python:

» Variables are just names (labels)

» Names “bind” to an object when assigned to

» Assignment does not copy data

def incr first(x):
Local scope x[0] += 1

B

Object space

Global scope , _ (0,1,2]
incr first(x)

print(x)

i

60 /86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to
» Assignment does not copy data

Object space

def incr_first(x): .
Local scope x[0] 4= 1
+1
Global scope [0,1,2] > [’ ' 1

X =

incr_ first(x) F

print(x)

61/86

Passing function arguments: pass by assignment —
no return in function

In Python:
» Variables are just names (labels)
» Names “bind” to an object when assigned to

» Assignment does not copy data
Object space
0
Local scope
Global scope _ [0,1,2] | —1(.) 1
incr first(x) EI'/

print(x)

62/86

Passing function arguments: pass by assignment —
the code

demo/example_7.py

def incr(x):
x += 1

x =0
incr (x)
print (x)

def incr_first(x):
x[0] += 1

x = [0,1,2]

incr_first(x)
print (x)

63/86

More Built-in types: Tuples

» Tuples are more or less like a list but cannot be changed (i.e., are immutable)
» Use parentheses instead of brackets

» Support similar operations as lists

x=(1,2,3)
x[1]=3 # TypeError!

6486

Tuples

demo/example_10.py

Tuples are an ordered sequence of elements, can mix element types

empty tuple
te = O

t = (2,"HEC",3)
print (t[0]) #evaluates to 2

a=(2,"HEC",3) + (5,6) # -evaluates to (2,"HEC",3,5,6)
b = t[1:2] # slice tuple, evaluates to ("HEC",)
#Note: the extra comma means a tuple with 1 element

c = t[1:3] #slice tuple, evaluates to ("HEC",3)
print(len(t)) #evaluates to 3

t[1] = 4 #gives an error, cannot modify object

65/86

Potential usage of Tuples

demo/example_11.py

Conveniently used to swap more variables (first examples does not work, the second

works):
—— temp = x
_— X =y (y, x) = (x, y)

y = temp
Used to return more than one value from a function:

def quotient_and_remainder(x, y):
q =x // y #integer division
r=x%hy
return (q, r)

(quot, rem) = quotient_and_remainder(7,6)

66 /86

lterate over Tuples

demo/example_13.py

>>> x = [(1,2), (3,4), (5,6)]
>>> for item in x:
. print "A tuple", item
A tuple (1, 2)
A tuple (3, 4)
A tuple (5, 6)
>>> for a, b in x:
. print "First", a, "then", b
First 1 then 2
First 3 then 4
First 5 then 6

67/86

More Built-in types: Dictionaries

v

If we want to manage a data collection of students, we can store information so
far e.g., using separate lists for every info:

names = ['Tom', 'Keith', 'Marry', 'Megan']
grade = [6.0, ' 4.5,5.2,4.9]
course = ['Programming', 'Physics', 'Econometrics', 'Economics']

A separate list for each item
Each list must have the same length

info stored across lists at same index, each index refers to info for a different
person

68 /86

Multiple Lists

def get_grade(student, name_list, grade_list, course_list):
i = name_list.index(student)
grade = grade_list[i]
course = course_list[i]
return (course, grade)

» Messy if have a lot of different info to keep track of
» Must maintain many lists and pass them as arguments
» Must always index using integers

» Must remember to change multiple lists

69 /86

Basic functionality of Dictionaries

» Nice to index item of interest directly (not always int)

» Nice to use one data structure, no separate lists

A list A dictionary
0 Elem 1 Key 1 Val1l
1 Elem 2 Key 2 Val 2
2 Elem 3 Key 3 Val 3
3 Elem 4 Key 4 Val 4

AR T N

Index Element Element

Custom index by label

70/86

A Dictionary in practice

» Store pairs of data
> Key
» Value

» similar to indexing into a list, looks up the key 'Keith’
» returns the value associated with Keith

» If key isn't found, you get an error

71/86

Some operations on Dictionaries

demo/example_24.py

» Add an entry

» grades['Freddy'] = 4.9
» Test if key in dictionary

» 'Tom' in grades — returns True
» 'Daniel' in grades — returns False

» Delete an entry
> del (grade ['Mary'l)

72/86

Some operations on Dictionaries

demo/example_24.py

Get an iterable that acts like a tuple of all keys
grades.keys() — returns ['Mickey', 'Keith', 'Megan', 'Tom']

>

>

» Get an iterable that acts like a tuple of all values

» grades.values() — returns [5.0, 4.5, 4.9, 6.0]
>

Order is not guaranteed

73/86

Dict — example

demo/example_19.py

x = dict(a=1, b=2, c='three')
x={'a': 1, 'b': 2, 'c': 'three'}

access wvia []
x['a'] ==

creating new entries
any hashable type can be a key
x[1] = 4

accessing keys, wvalues or both

order is nmot preserved

x.keys() # ['a’, 'c', 1, 'b']

x.values() # [1, 'three', 4, 2]

x.items() # [('a’, 1), (c, 'three'), (1, 4), ('bv', 2)]

74 /86

Dictionary keys and values

demo/example_24.py

» Values

> Any type (immutable and mutable)
» Can be duplicates
» Dictionary values can be lists, even other dictionaries!
> Keys
» Must be unique
» Immutable type (int, float, string, tuple, bool)
» actually need an object that is hash-table, but think of as immutable as all
immutable types are hash-table
» Be careful with float type as a key
» no order to keys or values!

d={4:{1: 0},(1,3): "twelve", 'const':[3.14,2.7,8.44]}

75/86

list versus dict

list

» ordered sequence of elements
» look up elements by an integer index
» indices have an order

» index is an integer

dict

» matches “keys'’ to “values”
» look up one item by another item
» no order is guaranteed

P> key can be any immutable type

76 /86

Dictionaries — summary

x = dict(a=1, b=2, c='three')
x=q{'a': 1, 'b': 2, 'c': 'three'}

access via []
x['a'] ==

creating new entries
any hashable type can be a key
x[1] = 4

accessing keys, wvalues or both

order is not preserved

x.keys() # ['a’, 'c', 1, 'b']

x.values() # [1, 'three', 4, 2]

x.items() # [('a’, 1), (c, 'three'), (1, 4), ('bv', 2)]

77/86

3. Recursion

78/86

Recursion

» Algorithmically: a way to design solutions to problems by divide-and-conquer or
decrease-and-conquer

» Reduce a problem to simpler versions of the same problem.
» Semantically: a programming technique where a function calls itself
» In programming, the goal is to NOT have infinite recursion

» Must have 1 or more base cases that are easy to solve
» Must solve the same problem on some other input with the goal of simplifying the
larger problem input.

79/86

lterative algorithms (for loops)

demo/example_20.py

» Looping constructs (while and for loops) lead to iterative algorithms.

» Can capture computation in a set of state variables that update on each iteration
through loop.

def mult_a(a, b):
result = 0

while b > O: “multiply a*b” is equivalent to “add a to
result += a itself b times”

= —~a4+at+ata+t...+a

return result

print (mult_a(2,10))

80 /386

The alternative — a recursive way

demo/example_21.py demo/example_22.py
The recursive step: Think how to reduce the problem to a simpler/smaller version of

same problem

» Base case

» Keep reducing the problem until we axb=atatatat..+a (ntimes)a

reach a simple case that can be solved =atatatat+...+a (1+n—1times)a
directly =a+ax(b—1) recursive reduction

» when b=1,axb=a

def mult_iter(a, b):

def factorial(n): if b == 1:
if n == 1: return a
return 1 else:
else: return a + mult_iter(a, b-1)
return n*factorial(n-1) print mult_iter(1,10)
print (factorial (10))

81/86

What's going on in factorial?

def fact(n):
if == 1:
return 1
else:
return n*fact(n-1)

print(fact(4))

Global scope fact scope fact scope fact scope
(call w/ n=4) (call w/ n=3) (call w/ n=2)

fact Some

fact scope
(call w/ n=1)

82/86

lteration versus Recursion

def factorial iter(m) : def factorial(n):
prod = 1 if n==1:
for i in range(l, n+1): return 1
prod *= i else:
return prod return nxfactorial(n-1)

P recursion may be simpler, more intuitive

A\

recursion may be efficient from programmer’s point of view

» recursion may not be efficient from a computer point of view

83/86

A famous Example: The Fibonacci sequence

Leonardo of Pisa (aka Fibonacci) modeled the following challenge.
Newborn pairs of rabbits (one female, one male) are put in a pen.
Rabbits mate at the age of one month.

Rabbits have a one-month gestation period.

vVvYyyvyy

Assume rabbits never die, and that female always produces one new pair (one
male, one female) every month from its second month on.

» — How many female rabbits are there at the end of one year?

84/86

Fibonacci Sequence — the code

https://en.wikipedia.org/wiki/Fibonacci_number

def F(n): 0 if n=0
if n == 0: return O F,.=<1 ifn=1
elif n == 1: return 1 .
else: return F(n-1) + F(n-2) Fo1+ Fp2 ifn>1

startNumber = int(input("Enter the start number here "))
endNumber = int(input("Enter the end number here "))

85/86

https://en.wikipedia.org/wiki/Fibonacci_number

Questions?

27 ? 22?279
3P 5955

a, 4. 40 il
.3 : ' Jl ‘f} %
i - ¥ v |

