Data Science and Advanced Programming — Lecture 3b
Python Start, Git

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

September 29th, 2025 | 12:30- 16:00 | Internef 263

1/35

Outline

» Replicable results
» Git repositories

1/35

Replicable results

See e.g. Stodden et. al (2014) --- Implementing Reproducible Research

2/35

Implementing reproducible research

» Computational tools are at the core of modern research.

» In addition to experiments & theory, the notions of simulation and
data-intensive discovery are often referred to as “third” (and fourth) pillars
of science.

3/35

Implementing reproducible research

» Computational tools are at the core of modern research.

» In addition to experiments & theory, the notions of simulation and
data-intensive discovery are often referred to as “third” (and fourth) pillars
of science.

» For all its importance, computing receives perfunctory attention in training
of new scientists and in the conduct of everyday research.

3/35

Implementing reproducible research

» Computational tools are at the core of modern research.

» In addition to experiments & theory, the notions of simulation and
data-intensive discovery are often referred to as “third” (and fourth) pillars
of science.

» For all its importance, computing receives perfunctory attention in training
of new scientists and in the conduct of everyday research.

» |t is treated as an inconsequential task that students and researchers learn “on the
go" with little consideration for ensuring computational results are trustworthy,
comprehensible, and ultimately a secure foundation for reproducible outcomes.

3/35

Implementing reproducible research Il

» Software and data are often stored with poor organization.

4/35

Implementing reproducible research Il

» Software and data are often stored with poor organization.

» Little documentation.

4/35

Implementing reproducible research Il

» Software and data are often stored with poor organization.
» Little documentation.
> Few tests.

4/35

Implementing reproducible research Il

» Software and data are often stored with poor organization.
» Little documentation.
> Few tests.

» Haphazard patchwork of software tools is used with limited attention paid to
capturing the complex work flows that emerge.

4/35

Implementing reproducible research Il

vVvyYyy

v

Software and data are often stored with poor organization.
Little documentation.
Few tests.

Haphazard patchwork of software tools is used with limited attention paid to
capturing the complex work flows that emerge.

The evolution of code is not tracked over time, making it difficult to
understand what iteration of the code was used to obtain any specific result.

4/35

Implementing reproducible research Il

vVvyYyy

v

Software and data are often stored with poor organization.

Little documentation.

Few tests.

Haphazard patchwork of software tools is used with limited attention paid to

capturing the complex work flows that emerge.

The evolution of code is not tracked over time, making it difficult to
understand what iteration of the code was used to obtain any specific result.

Many of the software packages used by scientists in research are proprietary and
closed source, preventing complete understanding and control of the final
scientific results.

One node hour on a HPC system costs around > 1 CHF

4/35

Result — status of the community

http://wuw.federalreserve.gov/econresdata/feds/2015/files/2015083pap.pdf

[s Economics Research Replicable?
Sixty Published Papers from Thirteen Journals Say
“Usually Not”

Andrew C. Chang*and Phillip Li

September 4, 2015

Abstract

We attempt to replicate 67 papers published in 13 well-regarded ics journals
using author-provided replication files that include both data and code. Some journals
in our sample require data and code replication files, and other journals do not require
such files. Aside from 6 papers that use confidential data, we obtain data and code
replication files for 29 of 35 papers (83%) that are required to provide such files as a
condition of publication, compared to 11 of 26 papers (42%) that are not required to
provide data and code replication files. We successfully replicate the key qualitative
result of 22 of 67 papers (33%) without contacting the authors. Excluding the 6 papers
that use confidential data and the 2 papers that use software we do not possess, we
replicate 29 of 59 papers (49%) with assistance from the authors. Because we are
able to replicate less than half of the papers in_our sample even with help from the
authors, we assert that economics research is usually not replicable. We conclude with

dations on i ing replication of ics research.

JEL Codes: BAL; C80; C82; O87; C8; E01

Keywords: Data and Code Archives; Gross Domestic Product; GDP; Journals;
Macroeconomics; National Income and Product Accounts; Publication; Research; Repli-
cation

5/35

http://www.federalreserve.gov/econresdata/feds/2015/files/2015083pap.pdf

Flaws in other fields

http://www.pnas.org/content/113/28/7900.abstract

A Bug in FMRI Software Could Invalidate 15
Years of Brain Research

HUMANS 06 July 2016 By BEC CREW

AR

There could be a very serious problem with the past 15 years of research into human brain
activity, with a new study suggesting that a bug in fMRI software could invalidate the results
of some 40,000 papers.

That's massive, because functional magnetic resonance imaging (fMRI) is one of the best
tools we have to measure brain activity, and if it's flawed, it means all those conclusions
about what our brains look like during things like exercise, gaming, love, and drug addiction
are wrong.

6/35

http://www.pnas.org/content/113/28/7900.abstract

Common computational research workflow

» Matlab, Python etc. for prototyping.
» Developing high-performance code in C++, ...
» Postprocessing (e.g. Matlab - manually twiddling data & Figs.)

7/35

Common computational research workflow

vvyyvyy

Matlab, Python etc. for prototyping.
Developing high-performance code in C4++, ...
Postprocessing (e.g. Matlab - manually twiddling data & Figs.)

— What if a couple of months later the researcher realizes there is a problem
with the results?Will he be able to remember what buttons he clicked to
reproduce the work flow to generate updated plots, paper manuscripts, etc.
— Publish-or-perishmindset encourages to charge forward chasing the goal
of an accepted manuscript.

— “reproducibility” implies repetition and thus the requirement also to move
back, to retrace one's steps.

7/35

Computational research life cycle

Open source community has cultivated tools and practices that, if embraced and adapted by
the scientific community, will greatly enhance the ability to achieve reproducible outcomes.

» Individual exploration: a single investigator tests an idea, algorithm, or question, likely
with a small-scale test, dataset, or simulation.

» Collaboration: if the initial exploration appears promising, more often than not some kind
of collaborative effort ensues to bring together complementary expertise from colleagues.

» Production-scale execution: large datasets and complex simulations often require the use
of clusters, supercomputers, or cloud resources in parallel.

» Publication: whether as a paper or an internal report for discussion with colleagues,
results need to be presented to others in a coherent form.

» Education: ultimately, research results become part of the corpus of a discipline that is
shared with students and colleagues, thus seeding the next iteration in the cycle of
research.

list from Millman and Pérez (2014)

8/35

Individual Work

» For individual work, researchers use various interactive computing environments: Excel, Python,
MATLAB, Mathematica, R,...

» These environments combine interactive, high-level programming languages with a rich set of
numerical and visualization libraries. The impact of these environments cannot be overstated;
researchers use them for rapid prototyping, interactive exploration, and data analysis, as well as
visualization.

9/35

Individual Work

» For individual work, researchers use various interactive computing environments: Excel, Python,
MATLAB, Mathematica, R,...

» These environments combine interactive, high-level programming languages with a rich set of
numerical and visualization libraries. The impact of these environments cannot be overstated;
researchers use them for rapid prototyping, interactive exploration, and data analysis, as well as
visualization.

» However, they have limitations:

» some of them are proprietary and/or expensive (Excel, MATLAB, Mathematica);
» most are focused on coding in a single, relatively slow, programming language.

9/35

Individual Work

» For individual work, researchers use various interactive computing environments: Excel, Python,
MATLAB, Mathematica, R,...

» These environments combine interactive, high-level programming languages with a rich set of
numerical and visualization libraries. The impact of these environments cannot be overstated;
researchers use them for rapid prototyping, interactive exploration, and data analysis, as well as
visualization.

» However, they have limitations:

» some of them are proprietary and/or expensive (Excel, MATLAB, Mathematica);
» most are focused on coding in a single, relatively slow, programming language.

» While the use of proprietary tools is not a problem per se and may be a good solution in industry,
it is a barrier to scientific collaboration and to the construction of a common scientific heritage
where anyone can validate the work of others and build upon it.

9/35

Individual Work

» For individual work, researchers use various interactive computing environments: Excel, Python,
MATLAB, Mathematica, R,...

» These environments combine interactive, high-level programming languages with a rich set of
numerical and visualization libraries. The impact of these environments cannot be overstated;
researchers use them for rapid prototyping, interactive exploration, and data analysis, as well as
visualization.

» However, they have limitations:

» some of them are proprietary and/or expensive (Excel, MATLAB, Mathematica);
» most are focused on coding in a single, relatively slow, programming language.

» While the use of proprietary tools is not a problem per se and may be a good solution in industry,
it is a barrier to scientific collaboration and to the construction of a common scientific heritage
where anyone can validate the work of others and build upon it.

» Scientists cannot share work unless all colleagues can purchase the same package.

9/35

Individual Work

» For individual work, researchers use various interactive computing environments: Excel, Python,
MATLAB, Mathematica, R,...

» These environments combine interactive, high-level programming languages with a rich set of
numerical and visualization libraries. The impact of these environments cannot be overstated;
researchers use them for rapid prototyping, interactive exploration, and data analysis, as well as
visualization.

» However, they have limitations:

» some of them are proprietary and/or expensive (Excel, MATLAB, Mathematica);
» most are focused on coding in a single, relatively slow, programming language.
» While the use of proprietary tools is not a problem per se and may be a good solution in industry,

it is a barrier to scientific collaboration and to the construction of a common scientific heritage
where anyone can validate the work of others and build upon it.

» Scientists cannot share work unless all colleagues can purchase the same package.

» Students are forced to work with black boxes they are legally prevented from inspecting.
Furthermore, because of their limitations in performance and handling large, complex code bases,
these tools are mostly used for prototyping: researchers eventually have to switch tools for
building production systems.

9/35

Collaboration

» For collaboration, researchers tend to use a mix of e-mail, version control systems
(VCSs) and shared network folders (Dropbox, etc.).

10/35

Collaboration

» For collaboration, researchers tend to use a mix of e-mail, version control systems
(VCSs) and shared network folders (Dropbox, etc.).

» VCSs are critically important in making research collaborative and reproducible.

10/35

Collaboration

» For collaboration, researchers tend to use a mix of e-mail, version control systems
(VCSs) and shared network folders (Dropbox, etc.).
» VCSs are critically important in making research collaborative and reproducible.

» They allow groups to work collaboratively on documents and track how they
evolve over time. Ideally, all aspects of computational research would be hosted
on publicly available version control repositories, such as GitHub, Bitbucket or

Google Code.

10/35

Collaboration

» For collaboration, researchers tend to use a mix of e-mail, version control systems
(VCSs) and shared network folders (Dropbox, etc.).

» VCSs are critically important in making research collaborative and reproducible.

» They allow groups to work collaboratively on documents and track how they
evolve over time. Ideally, all aspects of computational research would be hosted
on publicly available version control repositories, such as GitHub, Bitbucket or
Google Code.

» Unfortunately, the common approach is for researchers to e-mail documents to
each other with ad hoc naming conventions that provide a poor man's version
control.

10/35

Collaboration

» For collaboration, researchers tend to use a mix of e-mail, version control systems
(VCSs) and shared network folders (Dropbox, etc.).

» VCSs are critically important in making research collaborative and reproducible.

» They allow groups to work collaboratively on documents and track how they
evolve over time. ldeally, all aspects of computational research would be hosted
on publicly available version control repositories, such as GitHub, Bitbucket or
Google Code.

» Unfortunately, the common approach is for researchers to e-mail documents to
each other with ad hoc naming conventions that provide a poor man's version
control.

» While a small group can make it work, this approach most certainly does not scale
beyond a few collaborators, as painfully experienced by anyone who has
participated in the madness of a flurry of e-mail attachments with oddly named
files such as paper-final-v2-REALLY-FINAL-john-0CT9.doc.

10/35

Production-scale execution

» For production-scale execution, researchers typically turn away from the convenience of
interactive computing environments to compiled code (C,C++, Fortran) and libraries for
distributed and parallel processing.

11/35

Production-scale execution

» For production-scale execution, researchers typically turn away from the convenience of
interactive computing environments to compiled code (C,C++, Fortran) and libraries for
distributed and parallel processing.

» These tools are specialized enough that their mastery requires a substantial investment of
time. We emphasize, that before production-scale computations begin, the researchers
already have a working prototype in an interactive computing environment.

11/35

Production-scale execution

» For production-scale execution, researchers typically turn away from the convenience of
interactive computing environments to compiled code (C,C++, Fortran) and libraries for
distributed and parallel processing.

» These tools are specialized enough that their mastery requires a substantial investment of
time. We emphasize, that before production-scale computations begin, the researchers
already have a working prototype in an interactive computing environment.

» Therefore, turning to new parallel tools means starting over and maintaining at least two
versions of the code moving forward. Furthermore, data produced by the compiled version
are often imported back into the interactive environment for visualization and analysis.

11/35

Production-scale execution

» For production-scale execution, researchers typically turn away from the convenience of
interactive computing environments to compiled code (C,C++, Fortran) and libraries for
distributed and parallel processing.

» These tools are specialized enough that their mastery requires a substantial investment of
time. We emphasize, that before production-scale computations begin, the researchers
already have a working prototype in an interactive computing environment.

» Therefore, turning to new parallel tools means starting over and maintaining at least two
versions of the code moving forward. Furthermore, data produced by the compiled version
are often imported back into the interactive environment for visualization and analysis.

» The resulting back-and-forth work-flow is nearly impossible to capture and put into VCSs,
making the computational research difficult to reproduce.

11/35

Production-scale execution

» For production-scale execution, researchers typically turn away from the convenience of
interactive computing environments to compiled code (C,C++, Fortran) and libraries for
distributed and parallel processing.

» These tools are specialized enough that their mastery requires a substantial investment of
time. We emphasize, that before production-scale computations begin, the researchers
already have a working prototype in an interactive computing environment.

» Therefore, turning to new parallel tools means starting over and maintaining at least two
versions of the code moving forward. Furthermore, data produced by the compiled version
are often imported back into the interactive environment for visualization and analysis.

» The resulting back-and-forth work-flow is nearly impossible to capture and put into VCSs,
making the computational research difficult to reproduce.

» Obviously the alternative, taken by many, issimply to run the slow serial code for as long
as it takes. This is hardly a solution to the reproducibility problem, as run times in the
weeks or months become in practice single-shot efforts that no one will replicate.

11/35

Punclication & Education

» For publications and education, researchers use tools such as IATEX, Google Docs,
or Microsoft Word, PowerPoint,...

» The most important attribute of these tools in this context is that, IATEX
excepted, they integrate poorly with VCSs and are ill-suited for work flow
automation.

» Digital artefacts (code, data, and visualizations) are often manually pasted into
these documents, which easily leads to a divergence between the computational
outcomes and the publication.

» The lack of automated integration requires manual updating, something that is
errorprone and easy to forget.

12/35

| essons learned out of those issues

» The common approaches and tools used today introduce discontinuities between
the different stages of the scientific work flow. Forcing researchers to switch tools
at each stage, which in turn makes it difficult to move fluidly back and forth.

13/35

| essons learned out of those issues

» The common approaches and tools used today introduce discontinuities between
the different stages of the scientific work flow. Forcing researchers to switch tools
at each stage, which in turn makes it difficult to move fluidly back and forth.

» A key element of the problem is the gap that exists between what we view as
“final outcomes” of the scientific effort (papers and presentations that contain
artefacts such as figures, tables, and other outcomes of the computation) and the
pipeline that feeds these outcomes. Because most work flows involve a manual
transfer of information (often with unrecorded changes along the way), the
chances that these final outcomes match what the computational pipeline actually
produces at any given time are low.

13/35

| essons learned out of those issues

» The common approaches and tools used today introduce discontinuities between
the different stages of the scientific work flow. Forcing researchers to switch tools
at each stage, which in turn makes it difficult to move fluidly back and forth.

» A key element of the problem is the gap that exists between what we view as
“final outcomes” of the scientific effort (papers and presentations that contain
artefacts such as figures, tables, and other outcomes of the computation) and the
pipeline that feeds these outcomes. Because most work flows involve a manual
transfer of information (often with unrecorded changes along the way), the
chances that these final outcomes match what the computational pipeline actually
produces at any given time are low.

» The problems listed earlier are both technical and social. It is critical to
understand that at the end of the day, only when researchers make a conscious
decision to adopt improved work habits will we see substantial improvements on
this problem. Obviously, higher-quality tools will make it easier and more
appealing to adopt such changes; but other factors — from the inertia of
ingrained habits to the pressure applied by the incentive models of modern
research — are also at play.

13/35

Simple possible remedies

» — use open source tools (I don't claim to make all code open
source).

» — Version control with clear commit messages.

» — Execution automation (use makefiles, scripts to plot,...).

» — Testing (including unit tests).

» — Readability (well commented framework - write README,...)

14/35

Git repositories

» The official website: https://git-scm.com/
» Free git book: https:

//progit2.s3.amazonaws.com/en/2016-03-22-f3531/progit-en.1084.pdf
| put it into /materials

Push

Push
—
Pull Remote repository Pull
= =
Local reposito Local reposito
tfs v I edit this! repostiory I edit this!

X 7

°»

15/35

https://git-scm.com/
https://progit2.s3.amazonaws.com/en/2016-03-22-f3531/progit-en.1084.pdf
https://progit2.s3.amazonaws.com/en/2016-03-22-f3531/progit-en.1084.pdf

How | use git :)

THS 1S GIT. IT TRACKS COLLABORATIVE. LIORK
ON PROJECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

Co0L. Hou DO WEVSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE THEM TO SYNC LR
IF YoU GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE PROJECT,
AND DOWNLDAD A FRESH COPY.

\

https://xkcd.com/1597/

16/35

https://xkcd.com/1597/

Git overview

» As you develop software and make changes, add features, fix bugs, etc. it is often
useful to have a mechanism to keep track of changes and to ensure that your code

base and artefacts are well-protected by being stored on a reliable server (or
multiple servers).

17/35

Git overview

» As you develop software and make changes, add features, fix bugs, etc. it is often
useful to have a mechanism to keep track of changes and to ensure that your code
base and artefacts are well-protected by being stored on a reliable server (or
multiple servers).

» This allows you access to historic versions of your application’s code in case
something breaks or to “roll-back” to a previous version if a critical bug is found.

17/35

Git overview

» As you develop software and make changes, add features, fix bugs, etc. it is often
useful to have a mechanism to keep track of changes and to ensure that your code
base and artefacts are well-protected by being stored on a reliable server (or
multiple servers).

» This allows you access to historic versions of your application’s code in case
something breaks or to “roll-back” to a previous version if a critical bug is found.

» The solution is to use a revision control system that allows you to “check-in"
changes to a code base.

17/35

Git overview

» As you develop software and make changes, add features, fix bugs, etc. it is often
useful to have a mechanism to keep track of changes and to ensure that your code
base and artefacts are well-protected by being stored on a reliable server (or
multiple servers).

» This allows you access to historic versions of your application’s code in case
something breaks or to “roll-back” to a previous version if a critical bug is found.

» The solution is to use a revision control system that allows you to “check-in"
changes to a code base.

» It keeps track of all changes and allows you to "branch” a code base into a
separate copy so that you can develop features or enhancements in isolation of the
main code base (often called the "trunk” in keeping with the tree metaphor).

» Once a branch is completed (and well-tested and reviewed), it can then be merged
back into the main trunk and it becomes part of the project.

17/35

Version control system

» Git essentially keeps track of all changes made to a
project and allows users to work in large teams on
very complex projects while minimizing the conflicts
between changes.

» These systems are not only used for organizational
and backup purposes, but are absolutely essential
when developing software as part of a team.

» Each team member can have their own working
copy of the project code without interfering with
other developer's copies or the main trunk.

merge

» Only when separate branches have to be merged
into the trunk do conflicting changes have to be
addressed.

trunk/master branch
» Otherwise, such a system allows multiple developers
to work on a very complex project in an organized
manner.

18/35

Git — decentralized

v

Git is a decentralized system.

Multiple servers can act as repositories, but each copy on each developer's own
machine is also a complete revision copy.

Code commits are committed to the local repository.
Merging a branch into another requires a push/pull request.

Decentralizing the system means that anyone's machine can act as a code
repository and can lead to wider collaboration and independence since different
parties are no longer dependent on one master repository.

Git itself is a version control system that can be installed on any server.

19/35

Getting Access to a Repository

Various commercial providers:
» https://github.com
» https://bitbucket.org
» https://gitlab.org

Be careful: Some repositories are public (versus

private) — various user choices (10CHF — more
functionality).

20/35

https://github.com
https://bitbucket.org
https://gitlab.org

Creating a repository on github

» You will eventually want to publish (“push”) your project code to Github.
» To do this you'll first need tocreate a repository on Github's site.

1. Login to Github (https://github.com/) and click on the “repositories” tab.

2. Create a new repository with the name that will match your project folder (the
names do not have to match, but it keeps things organized). Provide a short
description and choose whether or not to make it public or private depending on
whether or not you are allowed to share your code with your Peers.

» You may choose to include a README file and/or establish a license (which

creates a LICENSE file). However, for this lecture we will assume that you start
with an empty repository on github. If you choose to create these files some extra

steps may be necessary.

[Contributions] Repositories Public activity # Edit profile

Search Al Publ it Sources Forks Mirror E

21/35

Cloning an Existing Repository

» There are a variety of WYSIWYG tools. We focus here on the command line
interface utilities (What You See Is What You Get).

» Advantage: quick, straightforward access to git.

» Disadvantage: requires good working knowledge of the command line;
proficiency takes longer.

» Which version:
» git --version which may output something like git version 2.7.4
» Clone a repository:

» — Move to the directory where you want the project files to be placed.

» — Execute the following command:

» git clone https://github.com/project/url

» eg. git clone https://github.com/sischei/global_solution_yalel9

» — now you can start to work with/editing the files of the project.

22/35

Creating & sharing your own project |

v

v

Before continuing we need to create a repository on Github, as mentioned earlier
Setup your local repository from the command line by going to your Project
directory and execute the following commands (approximate outputs have been
included below).

Initialize your directory by using: git init

This should result in an output like Initialized empty Git repository
in/your/directory/foo/.git/

Add all files, directories and subdirectories to your git index using

git add --all

Commit your files using the command here. The -m specified a commit message
follows.

Output should resemble:

[master (root-commit) 7a3fb99] Initial Commit
2 files changed, 24 insertiomns(+)

create mode 100644 README.md

create mode 100755 hello.c

23/35

Creating & sharing your own project |l

» Associate your repository with the repo on GitHub using the following command:
git remote add origin https://github.com/login/PROJECT.git, where
the URL is replaced with the URL for your project.

» Push your commit to the remote repository using the following command: git
push -u origin master

» Output should resemble something like:

Counting objects: 4 , done.

Delta compression using up to 8 threads.

Compressing objects: 100%(4 / 4), done.

Writing objects: 100%(4 / 4), 577 bytes | 10 bytes/s, done.
Total 4 (delta O), reused O (delta O)

To https://github.com/login/PROJECT. git

* [new branch] master -> master

Branch master set up to track remote branch master from origin.

24/35

Committing & Pushing Changes

» Now that your code is committed to Github's servers, you'll eventually want to
make changes to current files and/or add/remove files and commit these changes.

» Once you have made your changes, you can essentially repeat part of the process
above:

git add --all
git commit -m "Update Message"
git push -u origin master
» The “Update Message” should be more descriptive: it is used to document the
changes you've made for this commit. It is best practice to be as descriptive as
possible as to your changes.

» The git add --all command adds all files in the current directory as well as all
of its subdirectories to the commit index. If you want to be more precise and
intentional, you can add individual files using git add foo.txt, etc.

25/35

Collaboration on a project

v

vvyyy

You can then grant read/write access to your others by making them collaborators
on the project. You can easily do this in Github by following the instructions at
this link: https://help.github.com/articles/
adding-collaborators-to-a-personal-repository/

Once you've all been added, everyone should be able to push/pull from the same
repository.

Git has many more options like branching etc. — check the man pages...

Git Reference: http://gitref.org/

Git Glossary: https://help.github.com/articles/github-glossary/

GitHub’s walkthrough for both Windows and Mac:
https://help.github.com/articles/set-up-git/ https:
//services.github.com/kit/downloads/github-git-cheat-sheet.pdf

26 /35

https://help.github.com/articles/adding-collaborators-to-a-personal-repository/
https://help.github.com/articles/adding-collaborators-to-a-personal-repository/
http://gitref.org/
https://help.github.com/articles/github-glossary/
https://help.github.com/articles/set-up-git/
https://services.github.com/kit/downloads/github-git-cheat-sheet.pdf
https://services.github.com/kit/downloads/github-git-cheat-sheet.pdf

Example “hello world”

P Let's create a new directory, ~/tmp/test1, for our first git project.

cd

mkdir tmp
cd tmp
mkdir testl
cd testl

» Put the directory under git revision control:

git init
P Let's start our programming project. Write hello.py with your editor:

print ("hello world")

27/35

Example “hello world” (2)

>
| 2
>

Let's see what git thinks about what we're doing: git status

The git status command reports that hello.py is “Untracked.”

We can have git track hello.py by adding it to the “staging” area (more on this
later): git add hello.c (or git stage, which is simply an alias — has the
same functionality)

Run git status again. It now reports that hello.py is a new file to be
Committed.

Let's commit it: git commit

Git opens up your editor for you to type a commit message. A commit message
should describe what you're committing in the first line. If you have more to say,
Follow the first line with a blank line, and then with a more through multi-line
description.

For now, type in the following one-line commit message, save, and exit the editor:
Added hello-world program.

Run git status again. When git says nothing about a file, it means that it is
being tracked, and that it has not changed since it has been last committed.

28/35

Example “hello world” (3)

\ 4

Modify hello.py to print “bye world” instead, and run git status.
It reports that the file is “Changed but not updated.”

This means that the file has been modified since the last commit, but it is still not
ready to be committed because it has not been moved into the staging area.

In git, a file must first go to the staging area before it can be committed.

Before we move it to the staging area, let's see what we changed in the file:

git diff

The output should tell you that you took out the “hello world'* line, and added a
“bye world" line, like this:

-print("hello world")
+-print ("bye world")

We move the file to the staging area with the git add command: git add
hello.py

29/35

Example “hello world” (3)

> In git, “add” or “stage” means this: move the change you made to the staging
area. The change could be a modification to a tracked file, or it could be a
creation of a brand new file.

» This is a point of confusion for those of you who are familiar with other version
control systems such as “subversion”.

» At this point, git diff will report no change. Our change—from hello to bye-has
been moved into staging already. So this means that git diff reports the difference
between the staging area and the working copy of the file.

» To see the difference between the last commit and the staging area, add
—--cached option: git diff --cached

» Let's commit our change. If your commit message is a one-liner, you can skip the

editor by giving the message directly as part of the git commit command: git
commit -m "changed hello to bye"

30/35

Example “hello world” (5)

» To see your commit history: git log

» You can add a brief summary of what was done at each
commit: git log --stat —-—summary

» Or you can see the full diff at each commit: git log -p

31/35

Summary on file tracking

from Lee & Edwards (2013)

The tracked, the modified, and the staged

A file in a directory under git revision control is either tracked or untracked. A tracked file
can be unmodified, modified but unstaged, or modified and staged. Confused? Let’s try again.

There are four possibilities for a file in a git-controlled directory:

1. Untracked

Object files and executable files that can be rebuilt are usually not tracked.

2. Tracked, unmodified
The file is in the git repository, and it has not been modified since the last commit.
git status says nothing about the file.

3. Tracked, modified, but unstaged
You modified the file, but didn’t git add the file. The change has not been staged, so it’s
not ready for commit yet.

4. Tracked, modified, and staged

You modified the file, and did git add the file. The change has been moved to the
staging area. It is ready for commit.

‘The staging area is also called the “index.”

32/35

More useful commands

» To rename a tracked file:
git mv old-filename new-filename

» To remove a tracked file from the repository:
git rm filename

» The mv or rm actions are automatically staged for you, but you
still need to git commit your actions.
git mv old-filename new-filename

» Sometimes you make some changes to a file, but regret it, and
want to go back to the version last committed. If the file has
not been staged yet, you can do:
git checkout --filename

33/35

More useful commands

» If the file has been staged, you must first unstage it:
git reset HEAD filename

» There are two ways to display a manual page for a git
command. For example, for the git status command, you can
type one of the following two commands:
git help status
man git-status

» Lastly, git grep searches for specified patterns in all files in the
repository. To see all places you called print():
git grep print

34/35

Questions?

1. Advice — RTFM https:
//en.wikipedia.org/wiki/RTFM

2. Advice — http://1lmgtfy.com/
http://1lmgtfy.com/?7q=git+
repository

35/35

https://en.wikipedia.org/wiki/RTFM
https://en.wikipedia.org/wiki/RTFM
http://lmgtfy.com/
http://lmgtfy.com/?q=git+repository
http://lmgtfy.com/?q=git+repository

