
Data Science and Advanced Programming — Lecture 3
Python Fundamentals I

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

September 29th, 2025 | 12:30 - 16:00 | Internef 263

1 / 69

Roadmap

▶ Let’s get started with Python (Introduction to Computation and Programming
Using Python, J. Guttag)
1. Python Basics
2. Control flow: Branching and Loops
3. String Manipulation
4. Examples

Covered in the TA session/Videos:
▶ Version Control (git)
▶ Coding Style
▶ Enabling Collaboration, Replicability, and Code Enhancement

1 / 69

Recall — What does a Computer do?

▶ Fundamentally:
▶ performs calculations:

several billion calculations per second even on a Laptop!
▶ remembers results:

∼ terabytes of storage even on a Laptop!
▶ What kinds of calculations?

▶ built-in to the language (basic types: additions, substraction,....)
▶ Some calculations that you define as the programmer (built on top of the basic

operations).

computers only know what you tell them.
→ They only do what you tell them to do (REALLY FAST)!

2 / 69

Algorithm: A Basic Example – compute sqrt(x)

▶ Find the square root of a number x is g such that g∗g = x
▶ Algorithm (= recipe) for deducing square root of the number x = 16

1. Start with a guess, g
2. If g∗g is close enough to x, stop and say g is the answer
3. Otherwise make a new guess by averaging g and x/g
4. Using the new guess, repeat process until close enough

3 / 69

Recall — Algorithms

▶ sequence of simple steps.
▶ flow of control process that specifies when each step is executed.
▶ a means of determining when to stop (finite compute time).

→ 1+ 2+ 3 = an algorithm!

4 / 69

Comuters => Machines

▶ fixed program computer
▶ Pocket calculator (very limited in

terms of capabilities).
▶ stored program computer

▶ machine stores and executes
instructions.

▶ the computers we know nowadays.

5 / 69

Recall — a computer

A computer is a machine that can:
▶ Accept input. Input could be entered by a human typing at a

keyboard, received over a network, or provided automatically by
sensors attached to the computer.

▶ Execute a (mechanical) procedure, that is, a procedure where
each step can be executed without any thought.

▶ Produce output. Output could be data displayed to a human,
but it could also be anything that effects the world outside the
computer such as electrical signals that control how a device
operates.

6 / 69

Basics: von Neumann Architecture
https://computing.llnl.gov/tutorials/parallel_comp

▶ Virtually all computers have followed this basic design. Comprised of four
main components: Memory, Control Unit, Arithmetic Logic Unit,
Input/Output.

▶ Read/write, random access memory is used to store both program
instructions and data:
▶ Program instructions are coded data which tell the computer to

do something.
▶ Data is simply information to be used by the program.

▶ Control unit
▶ fetches instructions/data from memory, decodes the instructions

and then sequentially coordinates operations to accomplish the
programmed task.

▶ Arithmetic unit
▶ performs basic arithmetic operations.

▶ Input/Output
▶ interface to the human operator.

7 / 69

https://computing.llnl.gov/tutorials/parallel_comp

A (Python) Program

▶ A program is a sequence of definitions and commands
▶ definitions evaluated.
▶ commands executed by Python interpreter in a shell.

▶ Commands (statements) instruct interpreter to do something.
▶ can be typed directly in a shell or stored in a file that is read into the shell and

evaluated.

8 / 69

Recall — Some features

▶ Python is a high level language suitable for rapid development.
▶ It has a relatively small core language supported by many libraries.
▶ A multi-paradigm language, in that multiple programming styles are supported

(procedural, object-oriented, functional,…).
▶ Interpreted rather than compiled.

9 / 69

Recall — Syntax and Design

▶ One nice feature of Python is its elegant syntax — we’ll see many examples later
on.

▶ Elegant code might sound superfluous but in fact it’s highly beneficial because it
makes the syntax easy to read and easy to remember.

▶ Remembering how to read from files, sort dictionaries and other such routine
tasks means that you don’t need to break your flow in order to hunt down correct
syntax.

▶ Closely related to elegant syntax is elegant design.
▶ Features like iterators, generators, list comprehensions, etc. make Python highly

expressive, allowing you to get more done with less code.

10 / 69

1. Python Basics

11 / 69

Python Setup

12 / 69

Python Basics I

13 / 69

Python Basics II

14 / 69

Objects

▶ Programs manipulate data objects.
▶ objects have a type that defines the kinds of operations (∗,+,−, . . .) programs

can do to them:
▶ → Simon is a human: he can walk, speak French with an accent Fédérale, etc.
▶ → 3 is an integer, so we can +,−, ∗, /, ∗∗ . . .

▶ Objects are
▶ scalar (cannot be subdivided into smaller “sub-items”, e.g., a = 1).
▶ non-scalar (have internal structure that can be accessed, e.g., b = [1, 2, 3]).

15 / 69

Scalar Objects

▶ int - represent integers, for example 666
▶ float - represent real numbers, eg., 6.66
▶ bool - represent Boolean values True and False
▶ NoneType - special and has one value: None (absence of a type)
▶ use type() to see the type of an object

16 / 69

Action required: Type conversions

▶ Python can convert object of one type to another
▶ float(10) converts integer 10 to float 10.0
▶ int(10.9) truncates float 10.9 to integer 10 (rounding towards zero)

>>> float(10)
10.0
>>> int(10.9)
10

17 / 69

Print to the Terminal
demo/example1a.py

▶ In order to show output from code to a user, use print command

>>> 10 + 2
12
>>> print(10+2)
12

▶ You see the output only in an interactive shell.
▶ If you use a *.py file, you explicitly need to enforce output.
▶ Try this in a file print.py

a = 3+4
print('no printout so far')
print('here we go')
print(a)

18 / 69

Action Required

▶ Run demo/example1a.py:
python example1a.py

▶ Run demo/example1b.py:
python example1b.py

a = 3
b = 2

sum = a + b
print('no printout of the result so far')

a = 3
b = 2

sum = a + b
print('no printout of the result so far')
print("here we go with the result")
print(sum)

19 / 69

Create Expressions
▶ Combine objects and operators to form expressions
▶ An expression has a value, which has a type
▶ syntax for a simple expression:

<object> <operator> <object>
▶ i + j a sum
▶ i - j the difference
▶ i * j the product
▶ i / j division (be careful with result: type(1 / 2), type(1/2.0))

▶ Note: if both i, j are int, the result is int, if either or both are floats, result is a
float

▶ i % j the remainder when i is divided by j
▶ i ** j → i to the power of j

20 / 69

Summary: Numeric Operators
▶ Parentheses are used to tell Python to do these operations first
▶ Operator precedence without parentheses
▶ “+’‘ and “-” are executed left to right, as appear in expression

21 / 69

Order of Expressions

22 / 69

Assignments

▶ The equal sign (=) is an assignment of a value to a variable name
pi = 3.1415

Variable Value
▶ Its value is stored in the computer memory
▶ An assignment binds a name to value.
▶ You can retrieve the value associated with name or variable by invoking the name,

by typing pi.

>>> pi = 3.1415
>>> pi
3.1415

23 / 69

Expressions
demo/example2.py

▶ Why should you give names to values of expressions?

▶ → to reuse names instead of values
▶ → code is easier to read
▶ → easier to change code later

>>> pi = 3.14159
>>> radius = 2.0
>>> area = pi * (radius**2)

24 / 69

Programming logic vs. math logic

In programming, we do not “solve for x”

>>> pi = 3.14159
>>> radius = 2.0
>>> area = pi * (radius**2)
>>> radius = radius + 1
>>> radius
3.0

▶ → “=” is an assignment.
▶ → It strictly means “the expression on the right evaluated to a value on the left.”

25 / 69

Change Assignments
demo/example2b.py

▶ You can re-assign (re-bind) variable names using new assignment statements.
▶ Previous value may still stored in memory but lost the handle for it.
▶ The value for area does not change until you tell the computer to do the

calculation again.

>>> pi = 3.14159
>>> radius = 2.0
>>> area = pi * (radius**2)
>>> radius = radius + 1

26 / 69

Augmented Assignments
demo/example2c.py

27 / 69

Another helpful online tool
The Online Python Tutor is a free tool to visualize the execution of programs
step-by-step.

Feel free to use it for the course exercises and your own code:
http://pythontutor.com/visualize.html

28 / 69

http://pythontutor.com/visualize.html

Object: Characters, Strings
demo/example3.py

▶ Sequences of Characters: Letters, special characters, spaces, digits
▶ Enclose in quotation marks or single quotes (be consistent!)

>>> hi = "hello there"

▶ To concatenate strings, use +

>>> name = "Mickey"
>>> greet = hi + name
>>> greeting = hi + " " + name

▶ Do some operations (*) on a string as defined in Python docs

>>> nonsense = "howdy" + " " + name * 5

29 / 69

Input and Output
demo/example4.py

▶ “print” is used to output (text messages, numbers,. . .) to the console.

x = 666
print(x)
x_str = str(x) #Cast the number to a string
print("my favorite number is", x, ".", "x =", x) # use commas -> different objects
print("my favorite number is " + x_str + ". " + "x = " + x_str) # one big string object

30 / 69

Interactive Program: Input and Output (II)
demo/example5.py

▶ Input(" ") reads whatever is inside the quotation marks.
▶ The user types in something and presses enter.
▶ Input(" ") binds that value to a variable

>>> text = input("Type some meaningful text string... ")
>>> print(5*text)

▶ The input gives you a string so must cast if working with numbers

>>> num = int(input("Type a number... "))
>>> print(5*num)

31 / 69

Add tests to the Code: Comparison operators

▶ Assume i and j are variable names
▶ Comparisons shown below evaluate to a Boolean (logical)

▶ i > j
▶ i >= j
▶ i < j
▶ i <= j
▶ i == j → equality test, True if i is the same as j
▶ i != j → inequality test, True if i is NOT the same as j

▶ These tests work on int, float, string

>>> i = 3
>>> j = 5

>>> j < i
False

32 / 69

Testing: Logical operations

▶ Assume a and b are variable names (with Boolean values)
▶ not a — True if a is False, False if a is True
▶ a and b — True if both are True
▶ a or b — True if either or both are True

>>> a='true'
>>> b='true'
>>>a==b
Out[17]: True
>>>a!=b
Out[18]: False

33 / 69

2. Control flow: Branching and Loops

34 / 69

Control flow in the real world

35 / 69

Branching

36 / 69

Branching: if-else statements

if-elif-else statements:

if x < 0:
print("x is less than zero")

if x < 0:
print("x is less than zero")

else:
print("x is greater or equal zero")

if x < 0:
print("x is less than zero")

elif x > 0:
print ("x is greater than zero")

else:
print ("x is zero")

37 / 69

Indentation matters in Python to denote blocks of
code
demo/example6.py

PLEASE: 4 spaces indentation

38 / 69

if-else branching in general

▶ <condition> has a value True or False
▶ evaluate expressions in that code block if <condition> is True

39 / 69

Visualized: One-way if-statements

Start

boolean-expression

Statement(s)

Stop

True

False

Start

radius >= 0?

area = radius*radius*3.14159;
print(”The area for the circle of radius is”, area)

Stop

True

False

40 / 69

Visualized: Two-way if-statements

if boolean-expression:
statement(s)-for-the-true-case

else:
statement(s)-for-the-false-case

Start

boolean-expression

Statement(s) for the true case Statement(s) for the false case

End

True False

41 / 69

Multiple alternative if-statements

42 / 69

Flowchart
Start

score ≥ 90

grade = ’A’

score ≥ 80

grade = ’B’

score ≥ 70

grade = ’C’

score ≥ 60

grade = ’D’

grade = ’F’

End

true

false

true

false

true

false

true

false

43 / 69

Another Example
demo/example6a.py

x = float(input("Enter a number for x: "))
y = float(input("Enter a number for y: "))
if x == y:

print("x and y are equal")
if y != 0:

print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
elif x > y:

print("y is smaller")

44 / 69

Another Example
demo/example6c.py

x = 12/3 - 2 # this is a comment
y = "Hola"
z = 3.14 # another comment

if (y == "Hola" or z >= 3):
x = x + 2
y = y + " mundo!" # string concatenation
print(y)
print(x)

year, month , day = 1943, 6, 15
hour, minute, second = 23, 6, 54
if 1900 < year < 2100 and 1 <= month <= 12 \

and 1 <= day <= 31 and 0 <= hour < 24 \
and 0 <= minute < 60 and 0 <= second < 60:

print("Looks like a valid date!")

45 / 69

Control flow: while loop
demo/example7.py

46 / 69

While loop — iteration

47 / 69

Control flow: while loop in general

while <condition>:
<expression>
<expression>
...

▶ <condition> evaluates to a Boolean
▶ if <condition> is True, do all the steps inside the while code block
▶ check <condition> again
▶ repeat until <condition> is False

48 / 69

Loops — the Motivation

▶ Suppose that you need to print a string (e.g., ”Programming is fun!”) a
hundred times.

▶ It would be tedious to have to write the following statement a hundred
times:

print("Programming is fun!")
▶ So, how do you solve this problem?

49 / 69

Opening Problem

50 / 69

Control flow: for loops I
demo/example8.py

▶ To iterate through numbers in a sequence, use “for” loop

i = 0
while i < 10:
print(i)
i = i+1

▶ Shortcut for the for loop

for i in range(10):
print(i)

51 / 69

Control flow: for loops II
demo/example8.py

▶ In general, we use: range (start, stop, step)
▶ The default values are start=0 and step=1 and are optional
▶ The loop continues until the counter value is stop-1

sum = 0
for i in range(5,7):
sum += i

print(sum)

sum = 0
for i in range(40,50,2):
sum += i

print(sum)

demo/example8a.py
demo/example8b.py

52 / 69

Control flow: for loops III
demo/example8.py

for loop: in python only “for-each” form of loops

for <item> in <collection>:
<statements>

for item in [0, "a", 7, 1j]:
print(item)

for letter in "StRinG":
print(letter)

53 / 69

Example
demo/example9.py

for item in [0,"a",7,1,j]:
print(item)

for letter in "StRiNg":
print(letter)

for i in range(5):
print(i)

lst = ["Suzuki","Kawasaki","Aprilia","Ducati"]
use enumerate below!!!
for i in range(len(lst)):
print(i,lst[i])
for (i,item) in enumerate(lst):

print(i,item)

54 / 69

Stop within a loop — break statement
▶ If you want to immediately exit a loop → break
▶ It skips remaining expressions in the code block.
▶ Note: it exits only innermost loop.

while <condition_1>:
while <condition_2>:

<expression_a>
break
<expression_b>

<expression_c>

55 / 69

break — an example
demo/example10.py

var = 10
while var > 0:

print('Current variable value :', var)
var = var -1
if var == 5:

break

print ("Test done!")

56 / 69

3. String Manipulation

57 / 69

Strings → Sequences of Characters

Square brackets are used to perform indexing into a string to get the value at a certain
index/position.

s = ''abcd''

indices: 012 → indexing always starts at 0
indices: −3− 2− 1 → last element always at index -1
▶ s[0] evaluates to ”a”
▶ s[1] evaluates to ”b”
▶ s[2] evaluates to ”c”
▶ s[3] evaluates to ”d”
▶ s[4] trying to index out of bounds,

error

▶ s[-1] evaluates to ”d”
▶ s[-2] evaluates to ”c”
▶ s[-3] evaluates to ”b”
▶ s[-4] evaluates to ”a”

58 / 69

Mutable vs. Immutable types

▶ Mutable types
▶ Can change their contents / members
▶ lists, dicts, user-defined types

▶ Immutable types
▶ Cannot change their contents / members
▶ most built-in types (int, float, bool, str, tuple)

59 / 69

Recap: Strings and Loops
demo/example11.py

The two code snippets below do the same thing: they loop over the characters in the
string.

s = "mickey"
for index in range(len(s)):

if s[index] == 'i' or s[index] == 'y':
print("There is an i or y")

for char in s:
if char == 'i' or char == 'y':

print("There is an i or y")

60 / 69

4. Examples

61 / 69

Example: Guess and Check
demo/example12.py

We want to guess the cube root:

cube = 8
for guess in range(abs(cube)+1):

if guess**3 >= abs(cube):
break

if guess**3 != abs(cube):
print(cube, 'is not a perfect cube')

else:
if cube < 0:

guess = -guess
print('Cube root of '+str(cube)+' is '+str(guess))

62 / 69

Approximate Solutions

▶ We are performing finite-precision arithmetic on a computer.
▶ We need to define a good enough solution.

▶ start with a guess and increment by some small value.
▶ keep guessing if

∣∣guess3 − cube
∣∣ >= ε for some small ε.

▶ decreasing increment size =⇒ slower program.
▶ increasing ε =⇒ less accurate answer.

63 / 69

Recall — IEEE Floating Point Representation

Type Exponent Mantissa Smallest Largest Base 10 accuracy
float 8 23 1.2E-38 3.4E+38 6-9
double 11 52 2.2E-308 1.8E+308 15-17

64 / 69

An approximate solution
demo/example13.py

cube = 27.8
epsilon = 0.1
guess = 0.0
increment = 0.01
num_guesses = 0
look for close enough answer and make sure
didn't accidentally skip the close enough bound and thus overshoot
while abs(guess**3 - cube) >= epsilon and guess <= cube:

guess += increment
num_guesses += 1

print('num_guesses =', num_guesses)
if abs(guess**3 - cube) >= epsilon:

print('Failed on cube root of', cube, "with these parameters.")
else:

print(guess, 'is close to the cube root of', cube)

65 / 69

Another example: Bisection
Binary search algorithm - https://en.wikipedia.org/wiki/Binary_search_algorithm

▶ The idea of Bisection:
▶ half interval each iteration
▶ new guess is halfway in between

Visualization of the binary search algorithm where 7 is the target value.

66 / 69

https://en. wikipedia.org/wiki/Binary_search_algorithm

Bisection applied to the cube root
demo/example14.py

cube = 27.8
won't work with x < 1 because initial upper bound is less than ans
#cube = 0.25
epsilon = 0.01
num_guesses = 0
low = 0
high = cube
guess = (high + low)/2.0
while abs(guess**3 - cube) >= epsilon:

if guess**3 < cube:
look only in upper half search space
low = guess

else:
look only in lower half search space
high = guess

next guess is halfway in search space
guess = (high + low)/2.0
num_guesses += 1

print('num_guesses =', num_guesses)
print(guess, 'is close to the cube root of', cube)

67 / 69

Bisection applied to the cube root

▶ search space of size N
▶ first guess: N/2
▶ second guess: N/4
▶ k-th guess: N/2k

▶ The guess converges on the order of log2 N steps
▶ The Bisection search works when the value of function varies monotonically with

input.
▶ The code as shown only works for positive cubes > 1 - why?

68 / 69

Summary → GIT next

69 / 69

