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Roadmap

» Let's get started with Python (/ntroduction to Computation and Programming
Using Python, J. Guttag)

1. Python Basics

2. Control flow: Branching and Loops
3. String Manipulation

4. Examples

Covered in the TA session/Videos:
» Version Control (git)
» Coding Style
» Enabling Collaboration, Replicability, and Code Enhancement
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Recall — What does a Computer do?

» Fundamentally:

» performs calculations:

several billion calculations per second even on a Laptop!
» remembers results:

~ terabytes of storage even on a Laptop!
» What kinds of calculations?

» built-in to the language (basic types: additions, substraction,....)

» Some calculations that you define as the programmer (built on top of the basic
operations).

computers only know what you tell them.
— They only do what you tell them to do (REALLY FAST)!
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Algorithm: A Basic Example — compute sqrt(x)

» Find the square root of a number x is g such that g*g = x
» Algorithm (= recipe) for deducing square root of the number x = 16
1. Start with a guess, g

2. If g*g is close enough to x, stop and say g is the answer
3. Otherwise make a new guess by averaging g and x/g
4. Using the new guess, repeat process until close enough

__ (g+x/g) /2

16/3 4,17
4.17 17.36 3.837 4.0035
4.0035 16.0277 3o EET 4,000002
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Recall — Algorithms

» sequence of simple steps.
» flow of control process that specifies when each step is executed.
» a means of determining when to stop (finite compute time).

— 1+ 2+ 3 = an algorithm!
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Comuters => Machines

» fixed program computer

» Pocket calculator (very limited in
terms of capabilities).

» stored program computer

» machine stores and executes
instructions.

» the computers we know nowadays.
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Recall — a computer

A computer is a machine that can:

» Accept input. Input could be entered by a human typing at a
keyboard, received over a network, or provided automatically by
sensors attached to the computer.

» Execute a (mechanical) procedure, that is, a procedure where
each step can be executed without any thought.

» Produce output. Output could be data displayed to a human,
but it could also be anything that effects the world outside the
computer such as electrical signals that control how a device
operates.
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Basics: von Neumann Architecture

https://computing.llnl.gov/tutorials/parallel_comp

» Virtually all computers have followed this basic design. Comprised of four
main components: Memory, Control Unit, Arithmetic Logic Unit,
Input/Output.

» Read/write, random access memory is used to store both program
instructions and data:

» Program instructions are coded data which tell the computer to
do something.
» Data is simply information to be used by the program.

» Control unit Control

» fetches instructions/data from memory, decodes the instructions
and then sequentially coordinates operations to accomplish the
programmed task.

» Arithmetic unit
» performs basic arithmetic operations.
» Input/Output

» interface to the human operator.

Arithmetic

Logic
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https://computing.llnl.gov/tutorials/parallel_comp

A (Python) Program

> A program is a sequence of definitions and commands

» definitions evaluated.
» commands executed by Python interpreter in a shell.

» Commands (statements) instruct interpreter to do something.

P can be typed directly in a shell or stored in a file that is read into the shell and
evaluated.
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Recall — Some features

» Python is a high level language suitable for rapid development.
» It has a relatively small core language supported by many libraries.

» A multi-paradigm language, in that multiple programming styles are supported
(procedural, object-oriented, functional,...).

» Interpreted rather than compiled.
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Recall — Syntax and Design

» One nice feature of Python is its elegant syntax — we'll see many examples later
on.

» Elegant code might sound superfluous but in fact it's highly beneficial because it
makes the syntax easy to read and easy to remember.

» Remembering how to read from files, sort dictionaries and other such routine
tasks means that you don't need to break your flow in order to hunt down correct
syntax.

» Closely related to elegant syntax is elegant design.

P> Features like iterators, generators, list comprehensions, etc. make Python highly
expressive, allowing you to get more done with less code.
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1. Python Basics
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Python Setup

A bare-bones development environment consists of:
- A text editor (e.g., gedit, emacs, vim)

- The Python mteg_)reter (it is installed by default on

Ubuntu and almost any other Linux distribution)
— A terminal application to run the interpreter in.

See http://wiki.python.org/moin/
IntegratedbDevelopmentEnvironments for a commented
list of IDEs with Python support.
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Python Basics |

Python is an interpreted language.

It also features an interactive “shell” for evaluating
expressions and statements immediately.

The Python shell is started by invoking the command

n a terminal window.
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Python Basics Il

Expressions can be entered at the Python shell
prompt (the ">>>" at the start of a line); they are
evaluated and the result is printed:

> 242
4

A line can be continued onto the next by ending it with
the character \"; for example:

>>> "hello" +
" world!"

hello world!”

The prompt changes to *. ..  on continuation lines.

Reference:

http://docs. python.org/reference/lexical_analysis htmi#line-structure
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Objects

» Programs manipulate data objects.
» objects have a type that defines the kinds of operations (*, 4, —,...) programs
can do to them:
» — Simon is a human: he can walk, speak French with an accent Fédérale, etc.
» — 3 is an integer, so we can +,—,*, /, **
» Objects are

» scalar (cannot be subdivided into smaller “sub-items”, e.g., a=1).
» non-scalar (have internal structure that can be accessed, e.g., b=1,2,3] ).
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Scalar Objects

» int - represent integers, for example 666

» float - represent real numbers, eg., 6.66

» bool - represent Boolean values True and False

» NoneType - special and has one value: None (absence of a type)

» use type() to see the type of an object

Action required: What you type

-H,H‘_‘_H into the Python shell

What shows after
pressing enter
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Action required: Type conversions

» Python can convert object of one type to another
» float(10) converts integer 10 to float 10.0
» int(10.9) truncates float 10.9 to integer 10 (rounding towards zero)

>>> float(10)
10.0

>>> int(10.9)
10
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Print to the Terminal

demo/examplela.py

» In order to show output from code to a user, use print command

>>> 10 + 2

12

>>> print (10+2)
12

» You see the output only in an interactive shell.
» If you use a *.py file, you explicitly need to enforce output.
» Try this in a file print.py

a = 3+4

print('no printout so far')

print('here we go')
print(a)
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Action Required

» Run demo/examplela.py:
python examplela.py

» Run demo/examplelb.py:
python examplelb.py

sum = a + b
print('no printout of the result so far')

sum = a + b

print('no printout of the result so far')
print ("here we go with the result")

print (sum)
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Create Expressions

» Combine objects and operators to form expressions

v

An expression has a value, which has a type

v

syntax for a simple expression:

<object> <operator> <object>

i+ jasum

i - j the difference

[

* j the product
/ j division (be careful with result: type(1 / 2), type(1/2.0))

» Note: if both i, j are int, the result is int, if either or both are floats, result is a
float

vvyyy
- -

v
-

i % j the remainder when i is divided by j
» i ** j — i to the power of j
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Summary: Numeric Operators

» Parentheses are used to tell Python to do these operations first
» Operator precedence without parentheses

> “+' and “-" are executed left to right, as appear in expression

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 0.1 33.9

* Multiplication 300 * 30 29000
Float Division 1/ 2 0.5

i’/ Integer Division 1 /) 2 0

e Exponentiation 4 ** 0,5 2.0

] Remainder 20 % 3 2
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Order of Expressions

3+4*44+5* (44 3) -1

i+ 4

3+ 16 + 5

*®

7 -1

3+ 164+ 35 -1

19 + 35 - 1

A

54

53

i

1

(1) inside parentheses first
(2) multiplication

(3) multiplication

(4) addition

(5) addition

(6) subtraction

22/69



Assignments

» The equal sign (=) is an assignment of a value to a variable name

B,

Variable Value

P Its value is stored in the computer memory

» An assignment binds a name to value.

» You can retrieve the value associated with name or variable by invoking the name,
by typing pi.
>>> pi = 3.1415

>>> pi
3.1415
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Expressions

demo/example2.py

» Why should you give names to values of expressions?

» — to reuse names instead of values
» — code is easier to read
» —» easier to change code later

>>> pi = 3.14159 /

>>> radius = 2.0 Area = r?
>>> area = pi * (radius**2) |

-

Circle Area =
Txr?
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Programming logic vs. math logic

In programming, we do not “solve for x’

>>> pi = 3.14159

>>> radius = 2.0

>>> area = pi * (radius**2)
>>> radius = radius + 1

>>> radius

3.0

» — “="is an assignment.

» — It strictly means “the expression on the right evaluated to a value on the left.”
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Change Assignments

demo/example2b.py

» You can re-assign (re-bind) variable names using new assignment statements.
» Previous value may still stored in memory but lost the handle for it.

» The value for area does not change until you tell the computer to do the
calculation again.

assign

S 3.1415

>>> pl = 3.14159 p1 20
>>> radius = 2.0 di /% .
>>> area = pi * (radius**2) radius 4 3.0

>>> radius = radius + 1
D
area 1256

re-bind
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Augmented Assignments

demo/example2c.py

Operator

Example
i += 8
f -= 8.0
i *= 8
i /=8
i %= 8

Equivalent
i =1+ 8
f =f - 8.0
i=1i*8
i=1i/8
i=1%28
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Another helpful online tool

The Online Python Tutor is a free tool to visualize the execution of programs
step-by-step.

Python Tutor: Visualize code in Python, JavaScript, C, C++, and Java

Python 3.6

x=11, 2,3
v 18,5, 6]

y-append(7) foo /
¥ = hello” /

def Foo(1st):
1 ("h

Feel free to use it for the course exercises and your own code:
http://pythontutor.com/visualize.html
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Object: Characters, Strings

demo/example3.py

» Sequences of Characters: Letters, special characters, spaces, digits

» Enclose in quotation marks or single quotes (be consistent!)

>>> hi = "hello there"

» To concatenate strings, use +

>>> name = "Mickey"
>>> greet = hi + name
>>> greeting = hi + " " + name

» Do some operations (*) on a string as defined in Python docs

>>> nonsense = "howdy" + " " + name * 5

29 /69



Input and Output

demo/example4.py

» “print” is used to output (text messages, numbers,... ) to the console.

X = 666

print(x)

x_str = str(x)  #Cast the number to a string

print("my favorite number is", x, ".", "x =", x) # use commas -> different objects

print("my favorite number is " + x_str + ". " + "x = " + x_str) # one big string object
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Interactive Program: Input and Output (1)

demo/example5.py

» Input(" ") reads whatever is inside the quotation marks.
» The user types in something and presses enter.
» Input(" ") binds that value to a variable

>>> text = input("Type some meaningful text string... ")
>>> print(5*text)

» The input gives you a string so must cast if working with numbers

>>> num = int(input("Type a number... "))
>>> print (5*%num)
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Add tests to the Code: Comparison operators

» Assume i and j are variable names

» Comparisons shown below evaluate to a Boolean (logical)

VYVVYYVYY
He He e e e

i

> ]

== j — equality test, True if i is the same as j
I= j — inequality test, True if i is NOT the same as j

» These tests work on int, float, string

>>> i
>>>

>>> j
False
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Testing: Logical operations

» Assume a and b are variable names (with Boolean values)
» not a — True if a is False, False if a is True

» a and b — True if both are True

» a or b — True if either or both are True

>>> a='true'

>>> b='true'

>>>a==

Out[17]: True
>>>al!=b

Out[18]: False
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2. Control flow: Branching and Loops
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Control flow in the real world

100
times

4

/ print ("Programming
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print ("Programming
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is

print ("Programming is

print ("Programming i

print ("Programming

print ("Programming
print ("Programming
print ("Programming
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"
"
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Branching

e
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Branching: if-else statements

if-elif-else statements:

if x < 0:
print("x is less than zero")

if x < 0:
print("x is less than zero")
else:
print("x is greater or equal zero")

if x < 0O:

print("x is less than zero")
elif x > 0:

print ("x is greater than zero")
else:

print ("x is zero")
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Indentation matters in Python to denote blocks of
code

demo/example6.py

. if x < 0: <—— Colon required!
rint (“"x is less than zero”)

x < 0:
rint (“x is less than zero”)

rint (“x is greater or equal zero”)

< 0:

rint (*x is less than zero”)

x > 0:

rint (“x is greater than zero”)

rint (“x is zero”)

PLEASE: 4 spaces indentation
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if-else branching in general

if <condition>: if <condition>:
<expression> <expression>
<expression> <expre ion>
Alternative e
case —1 5 elif <condition>:
if <condition>: 5
<expression>
<expression> catches the
J—— “rest” I
else: . catch-all
<expression>
<expression>

» <condition> has a value True or False

P evaluate expressions in that code block if <condition> is True
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Visualized: One-way if-statements

. False
boolean-expression >———

True

Statement(s)

Start

False
radius >= 0? >————

True

area = radius*radius*3.14159;
print("The area for the circle of radius is”, area)
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Visualized: Two-way if-statements

if boolean-expression:

statement (s)-for-the-true-case
else:

statement (s)-for-the-false-case

True False

boolean-expression

Statement(s) for the true case Statement(s) for the false case

End —
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Multiple alternative if-statements

if score >= 90.0:
grade = 'A'
else:
if score >= E0
grade = 'B'
else:
if score >=
grade = 'C'
else:

grade
else:
grade =

if score >= ol

Equivalent

This is better

if score >= 90

grade = 'A'

elif score >= 50.0:

grade = 'B'
elif score >=
grade = 'C'
elif score >=
grade = 'D'
else:
grade

.
Ua
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Flowchart

score > 90

score > 80

score > 60

End
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Another Example

demo/exampleba.py

x = float(input("Enter a number for x: "))
y = float(input("Enter a number for y: "))
if x ==
print("x and y are equal")
if y != 0:
print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
elif x > y:
print("y is smaller")
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Another Example

demo/example6c.py

x = 12/3 - 2 # this is a comment
y = "Hola"

z = 3.14 # another comment
if (y == "Hola" or z >= 3):

x=x + 2

y =y + " mundo!" # string concatenation
print (y)

print(x)

year, month , day = 1943, 6, 15
hour, minute, second = 23, 6, 54
if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and O <= minute < 60 and 0 <= second < 60:
print("Looks like a valid date!")
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Control flow: while loop

demo/example7.py

while loop

x =0

hil < 7 <« ——— __— Avoid an infinite loop
wnile X H
print(“x/ $

4= q demol/example7a.py

X
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While loop — iteration

Code

True False

Loop
Body

|

Code
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Control flow: while loop in general

while <condition>:
<expression>
<expression>

<condition> evaluates to a Boolean

if <condition> is True, do all the steps inside the while code block

check <condition> again

vVvyyvyy

repeat until <condition> is False
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Loops — the Motivation

» Suppose that you need to print a string (e.g., "Programming is fun!”) a
hundred times.

» It would be tedious to have to write the following statement a hundred
times:

print ("Programming is fun!")

» So, how do you solve this problem?
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Opening Problem

100
times

print ("Programming
print ("Programming
print ("Programming
print ("Programming
print ("Programming
print ("Programming

print ("Programming
print ("Programming
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is
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is
is
is
is

is
is
is

fun!
fun!
fun!
fun!
fun!
fun!

fun!
fun!
fun!

)
"
"
"
"
"y

"
"
")
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Control flow: for loops |

demo/example8.py

» To iterate through numbers in a sequence, use “for” loop

i=20

while i < 10:
print (i)
i=i+l

» Shortcut for the for loop

for i in range(10):
print (i)
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Control flow: for loops Il

demo/example8.py

» In general, we use: range (start, stop, step)
» The default values are start=0 and step=1 and are optional

» The loop continues until the counter value is stop-1

sum = 0
for i in range(5,7):
sum += i
print (sum) demo/example8a.py
demo/example8b.py
sum = 0
for i in range(40,50,2):
sum += i

print (sum)
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Control flow: for loops Il

demo/example8.py

for loop: in python only “for-each” form of loops

for <item> in <collection>:
<statements>

for item in [0, "a", 7, 1j]:
print (item)

for letter in "StRinG":
print(letter)
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Example

demo/example9.py

for item in [0,"a",7,1,j]:
print (item)

for letter in "StRiNg":
print(letter)

for i in range(5):
print (i)

1st [”Suzuki","Kawasaki”,"Aprilia",“Ducati"]
# use enumerate below!!!
# for i in range(len(lst)):
# print (i, lst[i])
for (i,item) in enumerate(lst):
print(i,item)
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Stop within a loop — break statement

» If you want to immediately exit a loop — break
» It skips remaining expressions in the code block.

» Note: it exits only innermost loop.

while <condition_1>: "
- conditional

while <condition_2>: iy
<expression_a> If condition
break is true
<expression_b> condition
<expression_c>

If condition
is false
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break — an example

demo/examplel0.py

var = 10
while var > O:
print ('Current variable value
var = var -1
if var ==
break

print ("Test done!")

:', var)
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3. String Manipulation




Strings — Sequences of Characters

Square brackets are used to perform indexing into a string to get the value at a certain

index/position.

indices: 012 — indexing always starts at 0

s = ''abcd''

indices: —3 —2 — 1 — last element always at index -1

>

vvyyvyy

s [0]
s[1]
s[2]
s[3]

s [4]
error

evaluates to "a

evaluates to "b"”
evaluates to "c"
evaluates to "d”

trying to index out of bounds,

vVvyyvyy

s[-1] evaluates to
s[-2] evaluates to
s [-3] evaluates to

s[-4] evaluates to

g

nbn

a
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Mutable vs. Immutable types

» Mutable types

» Can change their contents / members
» lists, dicts, user-defined types

» Immutable types

» Cannot change their contents / members
» most built-in types (int, float, bool, str, tuple)
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Recap: Strings and Loops

demo/examplell.py

The two code snippets below do the same thing: they loop over the characters in the

string.
s = "mickey"
for index in range(len(s)):
if s[index] == 'i' or s[index] == 'y':

print ("There is an i or y")

for char in s:
if char == 'i' or char == 'y':
print("There is an i or y")
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4. Examples

(MORE mpu;s

PLEASE



Example: Guess and Check

demo/examplel2.py

We want to guess the cube root:

cube = 8
for guess in range(abs(cube)+1):
if guess**3 >= abs(cube):
break
if guess**3 != abs(cube):
print(cube, 'is not a perfect cube')

else:
if cube < 0O:
guess = -guess
print('Cube root of '+str(cube)+' is '+str(guess))
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Approximate Solutions

» We are performing finite-precision arithmetic on a computer.
» We need to define a good enough solution.

P start with a guess and increment by some small value.
» keep guessing if |guess3 — cube} >= ¢ for some small ¢.
» decreasing increment size = slower program.

» increasing ¢ = less accurate answer.
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Recall — IEEE Floating Point Representation

Single Precision

s exp mantissa

| D

~T1% B——>je 23

32 bits >

5 exp mantissa

—T1F<4-ﬁ e 52

f 64 bits

Double Precision
Type | Exponent | Mantissa | Smallest | Largest Base 10 accuracy
float 8 23 1.2E-38 3.4E4-38 6-9
double | 11 52 2.2E-308 | 1.8E+308 | 15-17
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An approximate solution

demo/examplel3.py

cube = 27.
epsilon =
guess = 0.
increment .01
num_guesses = 0
# look for close enough answer and make sure
# didn't accidentally skip the close enough bound and thus overshoot
while abs(guess**3 - cube) >= epsilon and guess <= cube:

guess += increment

num_guesses += 1
print ('num_guesses =', num_guesses)
if abs(guess*#*3 - cube) >= epsilon:

print('Failed on cube root of', cube, "with these parameters.")
else:

print(guess, 'is close to the cube root of', cube)

N o O @
—

N o
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Another example: Bisection

Binary search algorithm - https://en.wikipedia.org/wiki/Binary_search_algorithm

» The idea of Bisection:
» half interval each iteration

» new guess is halfway in between

mmmmmm e ——
<

3

1 |3 ‘4 6 |7 ‘8 ‘10'13’14‘18‘19|21‘24‘37|40‘45’71‘

Visualization of the binary search algorithm where 7 is the target value.
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Bisection applied to the cube root

demo/examplel4.py

cube = 27.8
# won't work with © < 1 because initial upper bound is less than ans
#cube = 0.25
epsilon = 0.01
num_guesses = 0
low = 0
high = cube
guess = (high + low)/2.0
while abs(guess*#*3 - cube) >= epsilon:
if guess**3 < cube:
# look only in upper half search space
low = guess
else:
# look only in lower half search space
high = guess
# next guess is halfway in search space
guess = (high + low)/2.0
num_guesses += 1
print ('num_guesses =', num_guesses)
print (guess, 'is close to the cube root of', cube)
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Bisection applied to the cube root

» search space of size N
> first guess: N/2
» second guess: N/4
> k-th guess: N/2k

» The guess converges on the order of log, N steps
» The Bisection search works when the value of function varies monotonically with
input.

» The code as shown only works for positive cubes > 1 - why?
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Summary — GIT next

gow what it does

When you doff*Smis



