Data Science and Advanced Programming — Lecture 3
Python Fundamentals |

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

September 29th, 2025 | 12:30- 16:00 | Internef 263

1/69

Roadmap

» Let's get started with Python (/ntroduction to Computation and Programming
Using Python, J. Guttag)

1. Python Basics

2. Control flow: Branching and Loops
3. String Manipulation

4. Examples

Covered in the TA session/Videos:
» Version Control (git)
» Coding Style
» Enabling Collaboration, Replicability, and Code Enhancement

1/69

Recall — What does a Computer do?

» Fundamentally:

» performs calculations:

several billion calculations per second even on a Laptop!
» remembers results:

~ terabytes of storage even on a Laptop!
» What kinds of calculations?

» built-in to the language (basic types: additions, substraction,....)

» Some calculations that you define as the programmer (built on top of the basic
operations).

computers only know what you tell them.
— They only do what you tell them to do (REALLY FAST)!

2/69

Algorithm: A Basic Example — compute sqrt(x)

» Find the square root of a number x is g such that g*g = x
» Algorithm (= recipe) for deducing square root of the number x = 16
1. Start with a guess, g

2. If g*g is close enough to x, stop and say g is the answer
3. Otherwise make a new guess by averaging g and x/g
4. Using the new guess, repeat process until close enough

__ (g+x/g) /2

16/3 4,17
4.17 17.36 3.837 4.0035
4.0035 16.0277 3o EET 4,000002

3/69

Recall — Algorithms

» sequence of simple steps.
» flow of control process that specifies when each step is executed.
» a means of determining when to stop (finite compute time).

— 1+ 2+ 3 = an algorithm!

4/69

Comuters => Machines

» fixed program computer

» Pocket calculator (very limited in
terms of capabilities).

» stored program computer

» machine stores and executes
instructions.

» the computers we know nowadays.

5/69

Recall — a computer

A computer is a machine that can:

» Accept input. Input could be entered by a human typing at a
keyboard, received over a network, or provided automatically by
sensors attached to the computer.

» Execute a (mechanical) procedure, that is, a procedure where
each step can be executed without any thought.

» Produce output. Output could be data displayed to a human,
but it could also be anything that effects the world outside the
computer such as electrical signals that control how a device
operates.

6/69

Basics: von Neumann Architecture

https://computing.llnl.gov/tutorials/parallel_comp

» Virtually all computers have followed this basic design. Comprised of four
main components: Memory, Control Unit, Arithmetic Logic Unit,
Input/Output.

» Read/write, random access memory is used to store both program
instructions and data:

» Program instructions are coded data which tell the computer to
do something.
» Data is simply information to be used by the program.

» Control unit Control

» fetches instructions/data from memory, decodes the instructions
and then sequentially coordinates operations to accomplish the
programmed task.

» Arithmetic unit
» performs basic arithmetic operations.
» Input/Output

» interface to the human operator.

Arithmetic

Logic

7/69

https://computing.llnl.gov/tutorials/parallel_comp

A (Python) Program

> A program is a sequence of definitions and commands

» definitions evaluated.
» commands executed by Python interpreter in a shell.

» Commands (statements) instruct interpreter to do something.

P can be typed directly in a shell or stored in a file that is read into the shell and
evaluated.

8/69

Recall — Some features

» Python is a high level language suitable for rapid development.
» It has a relatively small core language supported by many libraries.

» A multi-paradigm language, in that multiple programming styles are supported
(procedural, object-oriented, functional,...).

» Interpreted rather than compiled.

9/69

Recall — Syntax and Design

» One nice feature of Python is its elegant syntax — we'll see many examples later
on.

» Elegant code might sound superfluous but in fact it's highly beneficial because it
makes the syntax easy to read and easy to remember.

» Remembering how to read from files, sort dictionaries and other such routine
tasks means that you don't need to break your flow in order to hunt down correct
syntax.

» Closely related to elegant syntax is elegant design.

P> Features like iterators, generators, list comprehensions, etc. make Python highly
expressive, allowing you to get more done with less code.

10/69

1. Python Basics

3141

yA

093

%

X2 x3 xY

G W | R

sin cos tan

sinh cosh tanh

11/69

Python Setup

A bare-bones development environment consists of:
- A text editor (e.g., gedit, emacs, vim)

- The Python mteg_)reter (it is installed by default on

Ubuntu and almost any other Linux distribution)
— A terminal application to run the interpreter in.

See http://wiki.python.org/moin/
IntegratedbDevelopmentEnvironments for a commented
list of IDEs with Python support.

12/69

Python Basics |

Python is an interpreted language.

It also features an interactive “shell” for evaluating
expressions and statements immediately.

The Python shell is started by invoking the command

n a terminal window.

13/69

Python Basics Il

Expressions can be entered at the Python shell
prompt (the ">>>" at the start of a line); they are
evaluated and the result is printed:

> 242
4

A line can be continued onto the next by ending it with
the character \"; for example:

>>> "hello" +
" world!"

hello world!”

The prompt changes to *. .. on continuation lines.

Reference:

http://docs. python.org/reference/lexical_analysis htmi#line-structure

14 /69

Objects

» Programs manipulate data objects.
» objects have a type that defines the kinds of operations (*, 4, —,...) programs
can do to them:
» — Simon is a human: he can walk, speak French with an accent Fédérale, etc.
» — 3 is an integer, so we can +,—,*, /, **
» Objects are

» scalar (cannot be subdivided into smaller “sub-items”, e.g., a=1).
» non-scalar (have internal structure that can be accessed, e.g., b=1,2,3]).

15/69

Scalar Objects

» int - represent integers, for example 666

» float - represent real numbers, eg., 6.66

» bool - represent Boolean values True and False

» NoneType - special and has one value: None (absence of a type)

» use type() to see the type of an object

Action required: What you type

-H,H‘_‘_H into the Python shell

What shows after
pressing enter

16 /69

Action required: Type conversions

» Python can convert object of one type to another
» float(10) converts integer 10 to float 10.0
» int(10.9) truncates float 10.9 to integer 10 (rounding towards zero)

>>> float(10)
10.0

>>> int(10.9)
10

17/69

Print to the Terminal

demo/examplela.py

» In order to show output from code to a user, use print command

>>> 10 + 2

12

>>> print (10+2)
12

» You see the output only in an interactive shell.
» If you use a *.py file, you explicitly need to enforce output.
» Try this in a file print.py

a = 3+4

print('no printout so far')

print('here we go')
print(a)

18/69

Action Required

» Run demo/examplela.py:
python examplela.py

» Run demo/examplelb.py:
python examplelb.py

sum = a + b
print('no printout of the result so far')

sum = a + b

print('no printout of the result so far')
print ("here we go with the result")

print (sum)

19/69

Create Expressions

» Combine objects and operators to form expressions

v

An expression has a value, which has a type

v

syntax for a simple expression:

<object> <operator> <object>

i+ jasum

i - j the difference

[

* j the product
/ j division (be careful with result: type(1 / 2), type(1/2.0))

» Note: if both i, j are int, the result is int, if either or both are floats, result is a
float

vvyyy
- -

v
-

i % j the remainder when i is divided by j
» i ** j — i to the power of j

20/ 69

Summary: Numeric Operators

» Parentheses are used to tell Python to do these operations first
» Operator precedence without parentheses

> “+' and “-" are executed left to right, as appear in expression

Name Meaning Example Result

+ Addition 34 + 1 35

- Subtraction 34.0 0.1 33.9

* Multiplication 300 * 30 29000
Float Division 1/ 2 0.5

i’/ Integer Division 1 /) 2 0

e Exponentiation 4 ** 0,5 2.0

] Remainder 20 % 3 2

21/69

Order of Expressions

3+4*44+5* (44 3) -1

i+ 4

3+ 16 + 5

*®

7 -1

3+ 164+ 35 -1

19 + 35 - 1

A

54

53

i

1

(1) inside parentheses first
(2) multiplication

(3) multiplication

(4) addition

(5) addition

(6) subtraction

22/69

Assignments

» The equal sign (=) is an assignment of a value to a variable name

B,

Variable Value

P Its value is stored in the computer memory

» An assignment binds a name to value.

» You can retrieve the value associated with name or variable by invoking the name,
by typing pi.
>>> pi = 3.1415

>>> pi
3.1415

23/69

Expressions

demo/example2.py

» Why should you give names to values of expressions?

» — to reuse names instead of values
» — code is easier to read
» —» easier to change code later

>>> pi = 3.14159 /

>>> radius = 2.0 Area = r?
>>> area = pi * (radius**2) |

-

Circle Area =
Txr?

24 /69

Programming logic vs. math logic

In programming, we do not “solve for x’

>>> pi = 3.14159

>>> radius = 2.0

>>> area = pi * (radius**2)
>>> radius = radius + 1

>>> radius

3.0

» — “="is an assignment.

» — It strictly means “the expression on the right evaluated to a value on the left.”

25 /69

Change Assignments

demo/example2b.py

» You can re-assign (re-bind) variable names using new assignment statements.
» Previous value may still stored in memory but lost the handle for it.

» The value for area does not change until you tell the computer to do the
calculation again.

assign

S 3.1415

>>> pl = 3.14159 p1 20
>>> radius = 2.0 di /% .
>>> area = pi * (radius**2) radius 4 3.0

>>> radius = radius + 1
D
area 1256

re-bind

26 /69

Augmented Assignments

demo/example2c.py

Operator

Example
i += 8
f -= 8.0
i *= 8
i /=8
i %= 8

Equivalent
i =1+ 8
f =f - 8.0
i=1i*8
i=1i/8
i=1%28

27/69

Another helpful online tool

The Online Python Tutor is a free tool to visualize the execution of programs
step-by-step.

Python Tutor: Visualize code in Python, JavaScript, C, C++, and Java

Python 3.6

x=11, 2,3
v 18,5, 6]

y-append(7) foo /
¥ = hello” /

def Foo(1st):
1 ("h

Feel free to use it for the course exercises and your own code:
http://pythontutor.com/visualize.html

28 /69

http://pythontutor.com/visualize.html

Object: Characters, Strings

demo/example3.py

» Sequences of Characters: Letters, special characters, spaces, digits

» Enclose in quotation marks or single quotes (be consistent!)

>>> hi = "hello there"

» To concatenate strings, use +

>>> name = "Mickey"
>>> greet = hi + name
>>> greeting = hi + " " + name

» Do some operations (*) on a string as defined in Python docs

>>> nonsense = "howdy" + " " + name * 5

29 /69

Input and Output

demo/example4.py

» “print” is used to output (text messages, numbers,...) to the console.

X = 666

print(x)

x_str = str(x) #Cast the number to a string

print("my favorite number is", x, ".", "x =", x) # use commas -> different objects

print("my favorite number is " + x_str + ". " + "x = " + x_str) # one big string object

30/69

Interactive Program: Input and Output (1)

demo/example5.py

» Input(" ") reads whatever is inside the quotation marks.
» The user types in something and presses enter.
» Input(" ") binds that value to a variable

>>> text = input("Type some meaningful text string... ")
>>> print(5*text)

» The input gives you a string so must cast if working with numbers

>>> num = int(input("Type a number... "))
>>> print (5*%num)

31/69

Add tests to the Code: Comparison operators

» Assume i and j are variable names

» Comparisons shown below evaluate to a Boolean (logical)

VYVVYYVYY
He He e e e

i

>]

== j — equality test, True if i is the same as j
I= j — inequality test, True if i is NOT the same as j

» These tests work on int, float, string

>>> i
>>>

>>> j
False

32/69

Testing: Logical operations

» Assume a and b are variable names (with Boolean values)
» not a — True if a is False, False if a is True

» a and b — True if both are True

» a or b — True if either or both are True

>>> a='true'

>>> b='true'

>>>a==

Out[17]: True
>>>al!=b

Out[18]: False

33/69

2. Control flow: Branching and Loops

34/69

Control flow in the real world

100
times

4

/ print ("Programming
print ("Programming
print ("Programming

is
is

is

print ("Programming is

print ("Programming i

print ("Programming

print ("Programming
print ("Programming
print ("Programming

is
is
is

fun!
fun!
fun!
fun!
fun!
fun!

fun!
fun!
fun!

"
"
")
")

")

")

")
")
"

35/69

Branching

e

36 /69

Branching: if-else statements

if-elif-else statements:

if x < 0:
print("x is less than zero")

if x < 0:
print("x is less than zero")
else:
print("x is greater or equal zero")

if x < 0O:

print("x is less than zero")
elif x > 0:

print ("x is greater than zero")
else:

print ("x is zero")

37/69

Indentation matters in Python to denote blocks of
code

demo/example6.py

. if x < 0: <—— Colon required!
rint (“"x is less than zero”)

x < 0:
rint (“x is less than zero”)

rint (“x is greater or equal zero”)

< 0:

rint (*x is less than zero”)

x > 0:

rint (“x is greater than zero”)

rint (“x is zero”)

PLEASE: 4 spaces indentation

38/69

if-else branching in general

if <condition>: if <condition>:
<expression> <expression>
<expression> <expre ion>
Alternative e
case —1 5 elif <condition>:
if <condition>: 5
<expression>
<expression> catches the
J—— “rest” I
else: . catch-all
<expression>
<expression>

» <condition> has a value True or False

P evaluate expressions in that code block if <condition> is True

39/69

Visualized: One-way if-statements

. False
boolean-expression >———

True

Statement(s)

Start

False
radius >= 0? >————

True

area = radius*radius*3.14159;
print("The area for the circle of radius is”, area)

40/69

Visualized: Two-way if-statements

if boolean-expression:

statement (s)-for-the-true-case
else:

statement (s)-for-the-false-case

True False

boolean-expression

Statement(s) for the true case Statement(s) for the false case

End —

41/69

Multiple alternative if-statements

if score >= 90.0:
grade = 'A'
else:
if score >= E0
grade = 'B'
else:
if score >=
grade = 'C'
else:

grade
else:
grade =

if score >= ol

Equivalent

This is better

if score >= 90

grade = 'A'

elif score >= 50.0:

grade = 'B'
elif score >=
grade = 'C'
elif score >=
grade = 'D'
else:
grade

.
Ua

42/69

Flowchart

score > 90

score > 80

score > 60

End

43/69

Another Example

demo/exampleba.py

x = float(input("Enter a number for x: "))
y = float(input("Enter a number for y: "))
if x ==
print("x and y are equal")
if y != 0:
print("therefore, x / y is", x/y)
elif x < y:

print("x is smaller")
elif x > y:
print("y is smaller")

44/69

Another Example

demo/example6c.py

x = 12/3 - 2 # this is a comment
y = "Hola"

z = 3.14 # another comment
if (y == "Hola" or z >= 3):

x=x + 2

y =y + " mundo!" # string concatenation
print (y)

print(x)

year, month , day = 1943, 6, 15
hour, minute, second = 23, 6, 54
if 1900 < year < 2100 and 1 <= month <= 12 \
and 1 <= day <= 31 and 0 <= hour < 24 \
and O <= minute < 60 and 0 <= second < 60:
print("Looks like a valid date!")

45 /69

Control flow: while loop

demo/example7.py

while loop

x =0

hil < 7 <« ——— __— Avoid an infinite loop
wnile X H
print(“x/ $

4= q demol/example7a.py

X

46 /69

While loop — iteration

Code

True False

Loop
Body

|

Code

47/69

Control flow: while loop in general

while <condition>:
<expression>
<expression>

<condition> evaluates to a Boolean

if <condition> is True, do all the steps inside the while code block

check <condition> again

vVvyyvyy

repeat until <condition> is False

48 /69

Loops — the Motivation

» Suppose that you need to print a string (e.g., "Programming is fun!”) a
hundred times.

» It would be tedious to have to write the following statement a hundred
times:

print ("Programming is fun!")

» So, how do you solve this problem?

49 /69

Opening Problem

100
times

print ("Programming
print ("Programming
print ("Programming
print ("Programming
print ("Programming
print ("Programming

print ("Programming
print ("Programming
print ("Pragramming

is
is
is
is
is
is

is
is
is

fun!
fun!
fun!
fun!
fun!
fun!

fun!
fun!
fun!

)
"
"
"
"
"y

"
"
")

50 /69

Control flow: for loops |

demo/example8.py

» To iterate through numbers in a sequence, use “for” loop

i=20

while i < 10:
print (i)
i=i+l

» Shortcut for the for loop

for i in range(10):
print (i)

51/69

Control flow: for loops Il

demo/example8.py

» In general, we use: range (start, stop, step)
» The default values are start=0 and step=1 and are optional

» The loop continues until the counter value is stop-1

sum = 0
for i in range(5,7):
sum += i
print (sum) demo/example8a.py
demo/example8b.py
sum = 0
for i in range(40,50,2):
sum += i

print (sum)

52/69

Control flow: for loops Il

demo/example8.py

for loop: in python only “for-each” form of loops

for <item> in <collection>:
<statements>

for item in [0, "a", 7, 1j]:
print (item)

for letter in "StRinG":
print(letter)

53 /69

Example

demo/example9.py

for item in [0,"a",7,1,j]:
print (item)

for letter in "StRiNg":
print(letter)

for i in range(5):
print (i)

1st [”Suzuki","Kawasaki”,"Aprilia",“Ducati"]
use enumerate below!!!
for i in range(len(lst)):
print (i, lst[i])
for (i,item) in enumerate(lst):
print(i,item)

54/69

Stop within a loop — break statement

» If you want to immediately exit a loop — break
» It skips remaining expressions in the code block.

» Note: it exits only innermost loop.

while <condition_1>: "
- conditional

while <condition_2>: iy
<expression_a> If condition
break is true
<expression_b> condition
<expression_c>

If condition
is false

55 /69

break — an example

demo/examplel0.py

var = 10
while var > O:
print ('Current variable value
var = var -1
if var ==
break

print ("Test done!")

:', var)

56 /69

3. String Manipulation

Strings — Sequences of Characters

Square brackets are used to perform indexing into a string to get the value at a certain

index/position.

indices: 012 — indexing always starts at 0

s = ''abcd''

indices: —3 —2 — 1 — last element always at index -1

>

vvyyvyy

s [0]
s[1]
s[2]
s[3]

s [4]
error

evaluates to "a

evaluates to "b"”
evaluates to "c"
evaluates to "d”

trying to index out of bounds,

vVvyyvyy

s[-1] evaluates to
s[-2] evaluates to
s [-3] evaluates to

s[-4] evaluates to

g

nbn

a

58 /69

Mutable vs. Immutable types

» Mutable types

» Can change their contents / members
» lists, dicts, user-defined types

» Immutable types

» Cannot change their contents / members
» most built-in types (int, float, bool, str, tuple)

59 /69

Recap: Strings and Loops

demo/examplell.py

The two code snippets below do the same thing: they loop over the characters in the

string.
s = "mickey"
for index in range(len(s)):
if s[index] == 'i' or s[index] == 'y':

print ("There is an i or y")

for char in s:
if char == 'i' or char == 'y':
print("There is an i or y")

60 /69

4. Examples

(MORE mpu;s

PLEASE

Example: Guess and Check

demo/examplel2.py

We want to guess the cube root:

cube = 8
for guess in range(abs(cube)+1):
if guess**3 >= abs(cube):
break
if guess**3 != abs(cube):
print(cube, 'is not a perfect cube')

else:
if cube < 0O:
guess = -guess
print('Cube root of '+str(cube)+' is '+str(guess))

62/69

Approximate Solutions

» We are performing finite-precision arithmetic on a computer.
» We need to define a good enough solution.

P start with a guess and increment by some small value.
» keep guessing if |guess3 — cube} >= ¢ for some small ¢.
» decreasing increment size = slower program.

» increasing ¢ = less accurate answer.

63/69

Recall — IEEE Floating Point Representation

Single Precision

s exp mantissa

| D

~T1% B——>je 23

32 bits >

5 exp mantissa

—T1F<4-ﬁ e 52

f 64 bits

Double Precision
Type | Exponent | Mantissa | Smallest | Largest Base 10 accuracy
float 8 23 1.2E-38 3.4E4-38 6-9
double | 11 52 2.2E-308 | 1.8E+308 | 15-17

64 /69

An approximate solution

demo/examplel3.py

cube = 27.
epsilon =
guess = 0.
increment .01
num_guesses = 0
look for close enough answer and make sure
didn't accidentally skip the close enough bound and thus overshoot
while abs(guess**3 - cube) >= epsilon and guess <= cube:

guess += increment

num_guesses += 1
print ('num_guesses =', num_guesses)
if abs(guess*#*3 - cube) >= epsilon:

print('Failed on cube root of', cube, "with these parameters.")
else:

print(guess, 'is close to the cube root of', cube)

N o O @
—

N o

65 /69

Another example: Bisection

Binary search algorithm - https://en.wikipedia.org/wiki/Binary_search_algorithm

» The idea of Bisection:
» half interval each iteration

» new guess is halfway in between

mmmmmm e ——
<

3

1 |3 ‘4 6 |7 ‘8 ‘10'13’14‘18‘19|21‘24‘37|40‘45’71‘

Visualization of the binary search algorithm where 7 is the target value.

66 /69

https://en. wikipedia.org/wiki/Binary_search_algorithm

Bisection applied to the cube root

demo/examplel4.py

cube = 27.8
won't work with © < 1 because initial upper bound is less than ans
#cube = 0.25
epsilon = 0.01
num_guesses = 0
low = 0
high = cube
guess = (high + low)/2.0
while abs(guess*#*3 - cube) >= epsilon:
if guess**3 < cube:
look only in upper half search space
low = guess
else:
look only in lower half search space
high = guess
next guess is halfway in search space
guess = (high + low)/2.0
num_guesses += 1
print ('num_guesses =', num_guesses)
print (guess, 'is close to the cube root of', cube)

67/69

Bisection applied to the cube root

» search space of size N
> first guess: N/2
» second guess: N/4
> k-th guess: N/2k

» The guess converges on the order of log, N steps
» The Bisection search works when the value of function varies monotonically with
input.

» The code as shown only works for positive cubes > 1 - why?

68 /69

Summary — GIT next

gow what it does

When you doff*Smis

