Data Science and Advanced Programming — Lecture 13
High-Performance Computing with Python

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

December 8th, 2025 | 12:30-16:00 | Internef 263

1/56

| ecture Overview

Schedule:

@
@

®
@

Why Parallelism? (45 min)

Threading & 1/0-Bound (50 min)

— Break (15 min) —

Multiprocessing & CPU-Bound (55 min)
Finance Applications (45 min)

— Break (10 min) —

Projects & Best Practices (40 min)

Format:
o Slides introduce concepts
o Switch to notebooks for practice
o Back to slides for next concept
o Repeat!

What You’'ll Learn:
o Speed up your Python code
o Threading vs. Multiprocessing

o Real finance applications

1/56

Topic 1

Why Parallelism Matters

Motivation & Core Concepts

01_motivation.ipynb

2/56

The Problem: Your Code is Too Slow

Scenario: You need to price 10,000 exotic options using Monte Carlo simulation

o Each option requires 100,000 simulation paths
o Each simulation takes 0.1 seconds
o Total time: 10,000 x 0.1 = 1,000 seconds ~ 17 minutes

The Reality

Your laptop has 8 CPU cores, but Python is only using one of them! J
The Goal
Use all cores — Reduce time to ~ 2 minutes J

3/56

The End of Free Speed

Moore’s Law (1965-2005):
o Transistor count doubles every 2 years

o Clock speed kept increasing

) Perf
o Your code got faster automatically ; Cores
} Clock
The Wall (~2005): 1
o Power consumption o frequency? :
o Clock speeds plateaued at ~4 GHz |
‘ Year
2000 2010 2020

The Solution:
o More cores, not faster cores

o Your laptop: 4-16 cores

4/56

Sequential vs. Parallel Execution

Total time: 4 units

4x Speedup!

Parallel:

Task 1

Task 2 v

Task 3

Task 4

—

Time: 1 unit

Key Insight
If tasks are independent, we can run them simultaneously on different cores. J

5/56

<>

Hands-On Time!

Experience the Speedup

01_motivation.ipynb

Sections 1-2: Sequential vs. Parallel Option Pricing

6/56

Amdahl’'s Law: The Limits of Parallelism

Not everything can be parallelized:

o Reading input data
o Setting up calculations

o Combining final results

Amdahl’s Law:

1

Speedup = m

Sle]

Where:
o p = parallelizable fraction

o n = number of cores

Speedup

3x

2x

1x

95%

75%

=

Cores

Number of cores

Takeaway

Even with infinite cores, 50% parallel code
gives max 2x speedup!

7/56

<>

Hands-On Time!
Explore Amdahl’'s Law

01_motivation.ipynb

Sections 3-4: Scaling experiments and visualization

8/56

Why Finance Needs Parallelism

CPU-Intensive Tasks:

)) 1/O-Intensive Tasks:
o Monte Carlo simulations

) ..) L o Fetching market data
o Option pricing (exotic derivatives)

©

Reading multiple data files

o Portfolio optimization)
_ _ o API calls to data providers
o Risk calculations (VaR, CVaR) _
;] o Database queries
o Backtesting strategies)
o Downloading reports

(+]

Bootstrap inference

The Two Types of Waiting
o CPU-bound: Waiting for calculations to finish — Multiprocessing
o 1/0-bound: Waiting for data to arrive — Threading

9/56

Python's Parallel Toolkit

[concurrent.futures] + Start Hightlevel API

AN

‘ threading ’ ‘multiprocessing’ Lower-level modules
(OS Threads/Processes} Operating system
Our Focus: concurrent.futures
Clean, simple API that works for both threading and multiprocessing. J

10/56

[N T N

[N T N

First Look: Sequential vs.

Sequential (what you're used to):

results = []
for item in data:
result = slow_function(item)

results.append(result)

Parallel (what we’ll learn):

Parallel

from concurrent.futures import ProcessPoolExecutor

with ProcessPoolExecutor() as executor:

results = list(executor.map(slow_function, data))

That's It!

Two extra lines of code can give you 4-8x speedup on multi-core machines.

11/56

<>

Hands-On Time!

Complete Topic 1 Exercises

01_motivation.ipynb

Section 5: Exercises (put options, volatility grid)

12/56

Topic 2

Threading & 1/0O-Bound Tasks

When Waiting is the Bottleneck

02_threading_io_bound.ipynb

13/56

What is a Thread?

Process:

o Independent program, own memory

Process
o Heavy to create, true parallelism

Thread 1
Thread 2
Thread 3

Thread:

. .. Shared Memory
o Lives inside a process, shares memory

o Lightweight, concurrent (not parallel*)

*The Python Catch
Due to the GIL, Python threads don’t run truly in parallel for CPU work. J

14/56

The Global Interpreter Lock (GIL)

What is the GIL?
o A mutex in CPython

o Only one thread executes Python bytecode at

a time

o Protects memory management

What this means:
o CPU-bound code: threads don't help
o |/O-bound code: threads help a lot!

Why 1/0 works:
o GIL is released during I/O
o While one thread waits for data...

o ...another can do work!

T1 - wait -—> time

T2 wait —> time
I Python code 1/0 wait

Key Insight

Threads take turns using the CPU while
others wait for 1/0.

15/56

|/O-Bound vs. CPU-Bound

Characteristic 1/0-Bound CPU-Bound
Bottleneck Waiting for data Calculations
CPU usage Low (lots of idle) High (near 100%)
Solution Threading Multiprocessing

Finance Examples

Fetching stock prices Monte Carlo simulation
Reading CSV files Portfolio optimization
API calls VaR calculations
Database queries Option pricing

How to Tell?
Run your code and check CPU usage. If it's low while code runs slowly — 1/0-bound.

16 /56

<>

Hands-On Time!
|/O-Bound Demo

02_threading_io_bound.ipynb

Section 1: See threading in action with simulated data fetching

17/56

ThreadPoolExecutor: The Simple Way

from concurrent.futures import ThreadPoolExecutor
import time

def fetch_stock_data(ticker):
"""Simulate fetching data (I/0 operation)"""
time.sleep(0.5) # Simulate network delay
return {"ticker": ticker, "price": 100.0}

tickers = ["AAPL", "GOOGL", "MSFT", "AMZN"]
Parallel fetching

with ThreadPoolExecutor (max_workers=4) as executor:
results = list(executor.map(fetch_stock_data, tickers))

Sequential: 4 x 0.55s = 2.0s Parallel: ~ 0.5s (4x faster!)

18/56

8

10

Pattern 1: executor.map()

Use when: Same function, many inputs, order matters

from concurrent.futures import ThreadPoolExecutor

def process(item):
return item * 2

items = [1, 2, 3, 4, 5]

with ThreadPoolExecutor (max_workers=4) as executor:
results = list(executor.map(process, items)) # [2, 4, 6, 8, 10]

Key Properties

Results maintain input order e Simple syntax © Good for homogeneous tasks

19/56

Pattern 2: executor.submit() + as_completed()

Use when: Want results as they finish (not in order)

1 from concurrent.futures import ThreadPoolExecutor, as_completed
2

3 tickers = ["AAPL", "GOOGL", "MSFT", "AMZN"]
4

5 with ThreadPoolExecutor () as executor:

6 # Submit tasks

7 futures = {executor.submit(fetch_data, t): t
8 for t in tickers}

9

10 # Process results as they complete

11 for future in as_completed(futures):

12 ticker = futures[future]

13 result = future.result()

14 print (f"{ticker}: got data!")

15

When to use this pattern

Progress feedback, early termination, heterogeneous task times

20/56

<>

Hands-On Time!

Practice Both Patterns

02_threading_io_bound.ipynb

Section 2-3: executor.map() vs submit()+as_completed|()

21/56

Handling Exceptions in Threads

from concurrent.futures import ThreadPoolExecutor, as_completed

def risky_fetch(ticker):
if ticker == "BAD":
raise ValueError (f"Invalid ticker: {tickerl}")
return {"ticker": ticker, "price": 100.0}

tickers = ["AAPL", "BAD", "MSFT"]

with ThreadPoolExecutor () as executor:
futures = {executor.submit(risky_fetch, t): t for t in tickers}

for future in as_completed(futures):
ticker = futures[futurel
try:
result = future.result()
print (f"{ticker}: {result}")
except Exception as e:
print (f"{ticker}: ERROR - {el}")

22/56

Threading: Key Takeaways

When to Use Threading
o Fetching data from multiple sources
o Reading/writing multiple files

o Any task where you're waiting for external resources

When NOT to Use Threading
o Heavy computations (Monte Carlo, optimization)

o Number crunching — Use multiprocessing instead!

Best Practices
o Use ThreadPoolExecutor (not raw threads)
o Always handle exceptions

o Use context managers (with statement)

23/56

<>

Hands-On Time!

Complete Threading Exercises

02_threading_io_bound.ipynb

Section 4-5: File processing and exercises

24/56

Break Time

15 minutes

Next up: Multiprocessing for CPU-bound tasks

25 /56

Topic 3

Multiprocessing & CPU-Bound Tasks

True Parallelism for Heavy Computation

03_multiprocessing_cpu_bound. ipynb

26 /56

Why Multiprocessing?

The GIL Problem:
o Threads share one GIL
o Only one runs Python at a time

o CPU-bound code doesn't speed up

The Solution:
o Use separate processes
o Each process has its own GIL

o Each process has its own Python
interpreter

o True parallel execution!

-
Process 1
Python
+ GIL

Process 2
Python
+ GIL

N
Process 3

Python
+ GIL

|

|

|

CPU Cores

Result

3 processes = 3 cores working simultaneously J

27 /56

Threads vs. Processes: Trade-offs

Aspect Threads Processes
Memory Shared Separate (copied)
Creation Fast Slower
Communication Easy (shared vars) Harder (serialization)
GIL Blocked Bypassed

Best for [/O-bound CPU-bound

concurrent.futures ThreadPoolExecutor ProcessPoolExecutor

Process Overhead

Creating processes is slower and uses more memory. The task must be substantial enough to
overcome this overhead.

28 /56

<>

Hands-On Time!

Threading vs. Multiprocessing

03_multiprocessing_cpu_bound. ipynb

Section 1: See why threads fail for CPU-bound tasks

29/56

W N =

o ~N o o

10
11
12
13
14

ProcessPoolExecutor: Same API, True Parallelism

from concurrent.futures import ProcessPoolExecutor
import numpy as np

def monte_carlo_pi(n_samples):

X = np.random.random(n_samples)
y = np.random.random(n_samples)
inside = np.sum(x**2 + y**x2 <= 1)

return 4 * inside / n_samples
Split work across 4 processes
with ProcessPoolExecutor (max_workers=4) as executor:

estimates = list(executor.map(monte_carlo_pi, [1_000_000] * 4))

pi_estimate = np.mean(estimates)

30/56

N N

~N o o

10
11
12
13
14
15

Finance Example: Monte Carlo Option Pricing

import numpy as np
from concurrent.futures import ProcessPoolExecutor

def price_european_call(args):
SO, K, T, r, sigma, n_paths = args
Z = np.random.standard_normal (n_paths)
ST = SO * np.exp((r - 0.5*sigma**2)*T + sigma*np.sqrt(T)*Z)
payoffs = np.maximum(ST - K, 0)
return np.exp(-r * T) * np.mean(payoffs)

params = (100, 100, 1.0, 0.05, 0.2, 250_000) # SO,K,T,r,sigma,paths
with ProcessPoolExecutor (max_workers=4) as executor:

prices = list(executor.map(price_european_call, [params]#*8))
option_price = np.mean(prices)

31/56

<>

Hands-On Time!

Monte Carlo in Parallel

03_multiprocessing_cpu_bound. ipynb

Section 2: Option pricing with multiprocessing

32/56

©® N oA W N R

= =
= o ©

The Pickling Requirement

Processes have separate memory — data must be serialized (pickled)

What CAN’'T be pickled

Lambda functions, nested functions, file handles, DB connections

This will FAIL
with ProcessPoolExecutor() as executor:
results = executor.map(lambda x: x**2, [1,2,3]) # Error!

This WORKS
def square(x):
return x ** 2

with ProcessPoolExecutor() as executor:
results = executor.map(square, [1,2,3]) # OK!

33/56

When Parallelization Hurts: The Overhead Trap

BAD: Task is too small
def add_one(x):
return x + 1

Overhead of creating processes >> computation time
with ProcessPoolExecutor() as executor:

results = list(executor.map(add_one, range (100)))
This is SLOWER than sequential!

Rule of Thumb
Each task should take at least 10-100ms to justify process overhead.

Solution: Chunk your work into larger batches.

34/56

<>

Hands-On Time!
Chunking and Overhead

03_multiprocessing_cpu_bound. ipynb

Section 3: Learn when parallelization helps vs. hurts

35/56

Finance Application: Portfolio VaR

Value at Risk (VaR): Maximum expected loss at a confidence level

Monte Carlo VaR requires:
@ Simulate many portfolio return scenarios
@ Sort returns
@ Find the percentile cutoff

Parallelization strategy:
o Split simulations across processes
o Each process generates subset of scenarios

o Combine and calculate VaR at the end

Typical Speedup

4-core machine: 3-4x faster
8-core machine: 6-7x faster

36 /56

<>
| ——

Hands-On Time!

VaR Calculation

03_multiprocessing_cpu_bound. ipynb

Section 4: Parallel Value-at-Risk

37/56

Multiprocessing: Key Takeaways

When to Use

i) Watch Out For
o Monte Carlo simulations

_ o Overhead for small tasks
o Parameter grid searches

o Memory usage (data copied)

©

Backtesting strategies oo
o No lambdas (pickling)

o Heavy numerical computation)

Best Practices
Use ProcessPoolExecutor e Chunk small tasks e Profile before/after

38/56

Topic 4

Real-World Finance Applications
Putting It All Together

04_finance_applications.ipynb

39/56

Application 1: Parallel Backtesting

The Problem:

o Test a trading strategy with different parameters
o 100 parameter combinations x 10 years of data

o Sequential: hours of waiting

The Solution:

o Each parameter combination is independent
o Perfect for ProcessPoolExecutor

o Distribute across all CPU cores

Example Strategy

Moving average crossover: test all combinations of short (5-50 days) and long (20-200 days)
windows

40 /56

<>

Hands-On Time!

Parallel Backtesting

04_finance_applications.ipynb

Section 1: Build a parallel strategy backtester

41/56

Application 2: Bootstrap Confidence Intervals

The Problem:
o Estimate uncertainty in Sharpe ratio
o Need 10,000+ bootstrap samples

o Each sample: resample data, calculate statistic

Why it’s parallel-friendly:
o Each bootstrap sample is independent
o CPU-bound (resampling + calculations)
o Easy to split: 10,000 samples — 2,500 per core

Statistical Rigor

Bootstrap gives you confidence intervals without assuming normality — essential for fat-tailed
financial returns.

42/56

<>

Hands-On Time!

Bootstrap Analysis

04_finance_applications.ipynb

Section 2: Parallel bootstrap for Sharpe ratio Cl

43/56

Application 3: Correlation Matrix Computation

The Problem:
o 500 assets — 124,750 pairwise correlations
o Need rolling correlations over time

o Sequential calculation is slow

Parallelization Approach:
o Split asset pairs across processes
o Or: parallelize across time windows

o Combine results at the end

Note

NumPy already parallelizes some operations internally. Profile first! J

44 /56

Hands-On Time!
Complete Finance Applications
04_finance_applications.ipynb

Section 3: Correlation analysis and wrap-up

45/56

Break Time

10 minutes

Final session: Best practices and projects

46 /56

Topic 5

Best Practices & Projects
Writing Robust Parallel Code

05_project_exercises.ipynb

47/56

Decision Tree: Thread or Process?

Waiting
for 1/07?

Ye

ThreadPool
Executor

No

Keep
sequential

Yes

ProcessPool
Executor

48 /56

Common Pitfall 1: Shared State

The Problem

Multiple processes modifying the same variable causes unexpected behavior. J

WRONG - This doesn't work as expected!
counter = 0

def increment():
global counter
counter += 1 # Each process has its OWN copy!

with ProcessPoolExecutor() as executor:
executor .map (increment, range (100))

© © N o U AW N R

10
11 print(counter) # Still 0!
12

Solution J

Return values instead of modifying global state. Let the main process aggregate.

49 /56

© N oA W N R

11

Common Pitfall 2: Too Many Workers

WRONG - More workers than cores
with ProcessPoolExecutor (max_workers=100) as executor:
results = executor.map(cpu_task, data)

Context switching overhead kills performance!

RIGHT - Match workers to cores
import os

n_cores = os.cpu_count ()

with ProcessPoolExecutor (max_workers=n_cores) as executor:
results = executor.map(cpu_task, data)

Guidelines

o CPU-bound: workers < number of cores
o 1/O-bound: workers can exceed cores (2-4x)

o Memory-heavy: reduce workers to avoid swapping

50 /56

© N o oA W N R

= = = = =
o 0O h W N R O

Progress Bars with tqdm

from concurrent.futures import ProcessPoolExecutor, as_completed
from tqdm import tqdm

def slow_task(x):
... some computation
return x ** 2

items = range(100)

with ProcessPoolExecutor() as executor:
futures = [executor.submit(slow_task, x) for x in items]

results = []

for future in tqdm(as_completed(futures), total=len(items)):
results.append (future.result ())

100%, | ============| 100/100 [00:05<00:00, 18.32it/s]

51/56

Beyond concurrent.futures

When you need more power:

joblib Dask Ray
o Simple API o Parallel DataFrames o Distributed computing
o Memory mapping o Larger-than-RAM data o Actor model
o Good for NumPy o Lazy evaluation o ML focused
o scikit-learn uses it o Scales to clusters o Production ready

Start Simple

concurrent . futures handles 90% of use cases. Only reach for specialized tools when you
hit its limits.

52/56

Debugging Parallel Code

Parallel bugs are hard to find:
o Non-deterministic behavior
o Errors in worker processes

o Hard to reproduce

Strategies:
@ Start sequential: Make sure code works with max_workers=1
@ Catch exceptions: Always wrap future.result() in try/except
@ Test with small data: Faster iteration, easier to spot issues

@ Use logging: Print statements get mixed up

Golden Rule
If it works with max_workers=1, it should work with more. If not, you have a parallelism bug.J

53/56

<>

Hands-On Time!

Mini-Project Time!

05_project_exercises.ipynb

Choose your project and apply what you've learned

54/56

Summary: Your Parallel Python Toolkit

Key Message

You now have the tools to make your finance code run 4-8x faster. Use them wisely!

concurrent.futures

Network requests

Th PoolExecutor Pro oolExecutor
T?quound tasks fﬁfﬁfoun tasks
API calls Monte Carlo
File operations Optimization

Backtesting

55 /56

Thank You!

Questions?

Key takeaways:

©

|/O-bound — ThreadPoolExecutor
CPU-bound — ProcessPoolExecutor

Always profile before and after

© © o

Chunk small tasks to reduce overhead

Happy parallel programming!

56 /56

