
Data Science and Advanced Programming — Lecture 13
High-Performance Computing with Python

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

December 8th, 2025 | 12:30 - 16:00 | Internef 263

1 / 56

Lecture Overview

Schedule:
1 Why Parallelism? (45 min)
2 Threading & I/O-Bound (50 min)

— Break (15 min) —
3 Multiprocessing & CPU-Bound (55 min)
4 Finance Applications (45 min)

— Break (10 min) —
5 Projects & Best Practices (40 min)

Format:
Slides introduce concepts

Switch to notebooks for practice
Back to slides for next concept
Repeat!

What You’ll Learn:
Speed up your Python code
Threading vs. Multiprocessing
Real finance applications

1 / 56

Topic 1
Why Parallelism Matters

Motivation & Core Concepts

01_motivation.ipynb

2 / 56

The Problem: Your Code is Too Slow

Scenario: You need to price 10,000 exotic options using Monte Carlo simulation

Each option requires 100,000 simulation paths
Each simulation takes 0.1 seconds
Total time: 10, 000× 0.1 = 1, 000 seconds ≈ 17 minutes

The Reality
Your laptop has 8 CPU cores, but Python is only using one of them!

The Goal
Use all cores → Reduce time to ≈ 2 minutes

3 / 56

The End of Free Speed

Moore’s Law (1965-2005):
Transistor count doubles every 2 years
Clock speed kept increasing
Your code got faster automatically

The Wall (∼2005):
Power consumption ∝ frequency3

Clock speeds plateaued at ∼4 GHz

The Solution:
More cores, not faster cores
Your laptop: 4-16 cores

Year

Perf

Clock

Cores

2000 2010 2020

4 / 56

Sequential vs. Parallel Execution

Sequential: Task 1 Task 2 Task 3 Task 4

Total time: 4 units

Parallel:
Task 1
Task 2
Task 3
Task 4

Time: 1 unit

4x Speedup!

Key Insight
If tasks are independent, we can run them simultaneously on different cores.

5 / 56

Hands-On Time!
Experience the Speedup

01_motivation.ipynb

Sections 1-2: Sequential vs. Parallel Option Pricing

6 / 56

Amdahl’s Law: The Limits of Parallelism

Not everything can be parallelized:
Reading input data
Setting up calculations
Combining final results

Amdahl’s Law:

Speedup =
1

(1− p) + p
n

Where:
p = parallelizable fraction
n = number of cores

Cores

Speedup

1x

2x

3x

4x 95%

75%

50%

Number of cores

Takeaway
Even with infinite cores, 50% parallel code
gives max 2x speedup!

7 / 56

Hands-On Time!
Explore Amdahl’s Law

01_motivation.ipynb

Sections 3-4: Scaling experiments and visualization

8 / 56

Why Finance Needs Parallelism

CPU-Intensive Tasks:
Monte Carlo simulations
Option pricing (exotic derivatives)
Portfolio optimization
Risk calculations (VaR, CVaR)
Backtesting strategies
Bootstrap inference

I/O-Intensive Tasks:
Fetching market data
Reading multiple data files
API calls to data providers
Database queries
Downloading reports

The Two Types of Waiting
CPU-bound: Waiting for calculations to finish → Multiprocessing
I/O-bound: Waiting for data to arrive → Threading

9 / 56

Python’s Parallel Toolkit

concurrent.futures ← Start here!

threading multiprocessing

OS Threads/Processes

High-level API

Lower-level modules

Operating system

Our Focus: concurrent.futures
Clean, simple API that works for both threading and multiprocessing.

10 / 56

First Look: Sequential vs. Parallel
Sequential (what you’re used to):

1 results = []
2 for item in data:
3 result = slow_function(item)
4 results.append(result)
5

Parallel (what we’ll learn):
1 from concurrent.futures import ProcessPoolExecutor
2
3 with ProcessPoolExecutor() as executor:
4 results = list(executor.map(slow_function, data))
5

That’s It!
Two extra lines of code can give you 4-8x speedup on multi-core machines.

11 / 56

Hands-On Time!
Complete Topic 1 Exercises

01_motivation.ipynb

Section 5: Exercises (put options, volatility grid)

12 / 56

Topic 2
Threading & I/O-Bound Tasks

When Waiting is the Bottleneck

02_threading_io_bound.ipynb

13 / 56

What is a Thread?

Process:
Independent program, own memory
Heavy to create, true parallelism

Thread:
Lives inside a process, shares memory
Lightweight, concurrent (not parallel*)

Process

Shared Memory

Th
re

ad
1

Th
re

ad
2

Th
re

ad
3

*The Python Catch
Due to the GIL, Python threads don’t run truly in parallel for CPU work.

14 / 56

The Global Interpreter Lock (GIL)
What is the GIL?

A mutex in CPython
Only one thread executes Python bytecode at
a time
Protects memory management

What this means:
CPU-bound code: threads don’t help
I/O-bound code: threads help a lot!

Why I/O works:
GIL is released during I/O
While one thread waits for data...
...another can do work!

time

time

T1 wait

T2 wait

Python code I/O wait

Key Insight
Threads take turns using the CPU while
others wait for I/O.

15 / 56

I/O-Bound vs. CPU-Bound

Characteristic I/O-Bound CPU-Bound
Bottleneck Waiting for data Calculations
CPU usage Low (lots of idle) High (near 100%)
Solution Threading Multiprocessing

Finance Examples
Fetching stock prices Monte Carlo simulation
Reading CSV files Portfolio optimization

API calls VaR calculations
Database queries Option pricing

How to Tell?
Run your code and check CPU usage. If it’s low while code runs slowly → I/O-bound.

16 / 56

Hands-On Time!
I/O-Bound Demo

02_threading_io_bound.ipynb

Section 1: See threading in action with simulated data fetching

17 / 56

ThreadPoolExecutor: The Simple Way

1 from concurrent.futures import ThreadPoolExecutor
2 import time
3

4 def fetch_stock_data(ticker):
5 """Simulate fetching data (I/O operation)"""
6 time.sleep(0.5) # Simulate network delay
7 return {"ticker": ticker , "price": 100.0}
8

9 tickers = ["AAPL", "GOOGL", "MSFT", "AMZN"]
10

11 # Parallel fetching
12 with ThreadPoolExecutor(max_workers=4) as executor:
13 results = list(executor.map(fetch_stock_data , tickers))
14

Sequential: 4× 0.5s = 2.0s Parallel: ≈ 0.5s (4x faster!)

18 / 56

Pattern 1: executor.map()

Use when: Same function, many inputs, order matters
1 from concurrent.futures import ThreadPoolExecutor
2
3 def process(item):
4 return item * 2
5
6 items = [1, 2, 3, 4, 5]
7
8 with ThreadPoolExecutor(max_workers=4) as executor:
9 results = list(executor.map(process, items)) # [2, 4, 6, 8, 10]

10

Key Properties
Results maintain input order • Simple syntax • Good for homogeneous tasks

19 / 56

Pattern 2: executor.submit() + as_completed()
Use when: Want results as they finish (not in order)

1 from concurrent.futures import ThreadPoolExecutor, as_completed
2
3 tickers = ["AAPL", "GOOGL", "MSFT", "AMZN"]
4
5 with ThreadPoolExecutor() as executor:
6 # Submit tasks
7 futures = {executor.submit(fetch_data, t): t
8 for t in tickers}
9

10 # Process results as they complete
11 for future in as_completed(futures):
12 ticker = futures[future]
13 result = future.result()
14 print(f"{ticker}: got data!")
15

When to use this pattern
Progress feedback, early termination, heterogeneous task times

20 / 56

Hands-On Time!
Practice Both Patterns

02_threading_io_bound.ipynb

Section 2-3: executor.map() vs submit()+as_completed()

21 / 56

Handling Exceptions in Threads

1 from concurrent.futures import ThreadPoolExecutor, as_completed
2
3 def risky_fetch(ticker):
4 if ticker == "BAD":
5 raise ValueError(f"Invalid ticker: {ticker}")
6 return {"ticker": ticker, "price": 100.0}
7
8 tickers = ["AAPL", "BAD", "MSFT"]
9

10 with ThreadPoolExecutor() as executor:
11 futures = {executor.submit(risky_fetch, t): t for t in tickers}
12
13 for future in as_completed(futures):
14 ticker = futures[future]
15 try:
16 result = future.result()
17 print(f"{ticker}: {result}")
18 except Exception as e:
19 print(f"{ticker}: ERROR - {e}")
20

22 / 56

Threading: Key Takeaways
When to Use Threading

Fetching data from multiple sources
Reading/writing multiple files
Any task where you’re waiting for external resources

When NOT to Use Threading
Heavy computations (Monte Carlo, optimization)
Number crunching → Use multiprocessing instead!

Best Practices
Use ThreadPoolExecutor (not raw threads)
Always handle exceptions
Use context managers (with statement)

23 / 56

Hands-On Time!
Complete Threading Exercises

02_threading_io_bound.ipynb

Section 4-5: File processing and exercises

24 / 56

Break Time
15 minutes

Next up: Multiprocessing for CPU-bound tasks

25 / 56

Topic 3
Multiprocessing & CPU-Bound Tasks

True Parallelism for Heavy Computation

03_multiprocessing_cpu_bound.ipynb

26 / 56

Why Multiprocessing?

The GIL Problem:
Threads share one GIL
Only one runs Python at a time
CPU-bound code doesn’t speed up

The Solution:
Use separate processes
Each process has its own GIL
Each process has its own Python
interpreter
True parallel execution!

Process 1
Python
+ GIL

Process 2
Python
+ GIL

Process 3
Python
+ GIL

CPU Cores

Result
3 processes = 3 cores working simultaneously

27 / 56

Threads vs. Processes: Trade-offs

Aspect Threads Processes
Memory Shared Separate (copied)
Creation Fast Slower
Communication Easy (shared vars) Harder (serialization)
GIL Blocked Bypassed
Best for I/O-bound CPU-bound
concurrent.futures ThreadPoolExecutor ProcessPoolExecutor

Process Overhead
Creating processes is slower and uses more memory. The task must be substantial enough to
overcome this overhead.

28 / 56

Hands-On Time!
Threading vs. Multiprocessing

03_multiprocessing_cpu_bound.ipynb

Section 1: See why threads fail for CPU-bound tasks

29 / 56

ProcessPoolExecutor: Same API, True Parallelism

1 from concurrent.futures import ProcessPoolExecutor
2 import numpy as np
3
4 def monte_carlo_pi(n_samples):
5 x = np.random.random(n_samples)
6 y = np.random.random(n_samples)
7 inside = np.sum(x**2 + y**2 <= 1)
8 return 4 * inside / n_samples
9

10 # Split work across 4 processes
11 with ProcessPoolExecutor(max_workers=4) as executor:
12 estimates = list(executor.map(monte_carlo_pi, [1_000_000] * 4))
13
14 pi_estimate = np.mean(estimates)
15

30 / 56

Finance Example: Monte Carlo Option Pricing

1 import numpy as np
2 from concurrent.futures import ProcessPoolExecutor
3
4 def price_european_call(args):
5 S0, K, T, r, sigma, n_paths = args
6 Z = np.random.standard_normal(n_paths)
7 ST = S0 * np.exp((r - 0.5*sigma**2)*T + sigma*np.sqrt(T)*Z)
8 payoffs = np.maximum(ST - K, 0)
9 return np.exp(-r * T) * np.mean(payoffs)

10
11 params = (100, 100, 1.0, 0.05, 0.2, 250_000) # S0,K,T,r,sigma,paths
12
13 with ProcessPoolExecutor(max_workers=4) as executor:
14 prices = list(executor.map(price_european_call , [params]*8))
15 option_price = np.mean(prices)
16

31 / 56

Hands-On Time!
Monte Carlo in Parallel

03_multiprocessing_cpu_bound.ipynb

Section 2: Option pricing with multiprocessing

32 / 56

The Pickling Requirement

Processes have separate memory → data must be serialized (pickled)

What CAN’T be pickled
Lambda functions, nested functions, file handles, DB connections

1 # This will FAIL
2 with ProcessPoolExecutor() as executor:
3 results = executor.map(lambda x: x**2, [1,2,3]) # Error!
4
5 # This WORKS
6 def square(x):
7 return x ** 2
8
9 with ProcessPoolExecutor() as executor:

10 results = executor.map(square, [1,2,3]) # OK!
11

33 / 56

When Parallelization Hurts: The Overhead Trap

1 # BAD: Task is too small
2 def add_one(x):
3 return x + 1
4
5 # Overhead of creating processes >> computation time
6 with ProcessPoolExecutor() as executor:
7 results = list(executor.map(add_one, range(100)))
8 # This is SLOWER than sequential!
9

Rule of Thumb
Each task should take at least 10-100ms to justify process overhead.
Solution: Chunk your work into larger batches.

34 / 56

Hands-On Time!
Chunking and Overhead

03_multiprocessing_cpu_bound.ipynb

Section 3: Learn when parallelization helps vs. hurts

35 / 56

Finance Application: Portfolio VaR
Value at Risk (VaR): Maximum expected loss at a confidence level

Monte Carlo VaR requires:
1 Simulate many portfolio return scenarios
2 Sort returns
3 Find the percentile cutoff

Parallelization strategy:
Split simulations across processes
Each process generates subset of scenarios
Combine and calculate VaR at the end

Typical Speedup
4-core machine: 3-4x faster
8-core machine: 6-7x faster

36 / 56

Hands-On Time!
VaR Calculation

03_multiprocessing_cpu_bound.ipynb

Section 4: Parallel Value-at-Risk

37 / 56

Multiprocessing: Key Takeaways

When to Use
Monte Carlo simulations
Parameter grid searches
Backtesting strategies
Heavy numerical computation

Watch Out For
Overhead for small tasks
Memory usage (data copied)
No lambdas (pickling)

Best Practices
Use ProcessPoolExecutor • Chunk small tasks • Profile before/after

38 / 56

Topic 4
Real-World Finance Applications

Putting It All Together

04_finance_applications.ipynb

39 / 56

Application 1: Parallel Backtesting
The Problem:

Test a trading strategy with different parameters
100 parameter combinations × 10 years of data
Sequential: hours of waiting

The Solution:
Each parameter combination is independent
Perfect for ProcessPoolExecutor
Distribute across all CPU cores

Example Strategy
Moving average crossover: test all combinations of short (5-50 days) and long (20-200 days)
windows

40 / 56

Hands-On Time!
Parallel Backtesting

04_finance_applications.ipynb

Section 1: Build a parallel strategy backtester

41 / 56

Application 2: Bootstrap Confidence Intervals
The Problem:

Estimate uncertainty in Sharpe ratio
Need 10,000+ bootstrap samples
Each sample: resample data, calculate statistic

Why it’s parallel-friendly:
Each bootstrap sample is independent
CPU-bound (resampling + calculations)
Easy to split: 10,000 samples → 2,500 per core

Statistical Rigor
Bootstrap gives you confidence intervals without assuming normality — essential for fat-tailed
financial returns.

42 / 56

Hands-On Time!
Bootstrap Analysis

04_finance_applications.ipynb

Section 2: Parallel bootstrap for Sharpe ratio CI

43 / 56

Application 3: Correlation Matrix Computation

The Problem:
500 assets → 124,750 pairwise correlations
Need rolling correlations over time
Sequential calculation is slow

Parallelization Approach:
Split asset pairs across processes
Or: parallelize across time windows
Combine results at the end

Note
NumPy already parallelizes some operations internally. Profile first!

44 / 56

Hands-On Time!
Complete Finance Applications

04_finance_applications.ipynb

Section 3: Correlation analysis and wrap-up

45 / 56

Break Time
10 minutes

Final session: Best practices and projects

46 / 56

Topic 5
Best Practices & Projects

Writing Robust Parallel Code

05_project_exercises.ipynb

47 / 56

Decision Tree: Thread or Process?

Waiting
for I/O?

ThreadPool
Executor Task > 10ms?

Keep
sequential

ProcessPool
Executor

Yes No

No Yes

48 / 56

Common Pitfall 1: Shared State
The Problem
Multiple processes modifying the same variable causes unexpected behavior.

1 # WRONG - This doesn't work as expected!
2 counter = 0
3
4 def increment():
5 global counter
6 counter += 1 # Each process has its OWN copy!
7
8 with ProcessPoolExecutor() as executor:
9 executor.map(increment, range(100))

10
11 print(counter) # Still 0!
12

Solution
Return values instead of modifying global state. Let the main process aggregate.

49 / 56

Common Pitfall 2: Too Many Workers

1 # WRONG - More workers than cores
2 with ProcessPoolExecutor(max_workers=100) as executor:
3 results = executor.map(cpu_task, data)
4 # Context switching overhead kills performance!
5
6 # RIGHT - Match workers to cores
7 import os
8 n_cores = os.cpu_count()
9 with ProcessPoolExecutor(max_workers=n_cores) as executor:

10 results = executor.map(cpu_task, data)
11

Guidelines
CPU-bound: workers ≤ number of cores
I/O-bound: workers can exceed cores (2-4x)
Memory-heavy: reduce workers to avoid swapping

50 / 56

Progress Bars with tqdm
1 from concurrent.futures import ProcessPoolExecutor , as_completed
2 from tqdm import tqdm
3
4 def slow_task(x):
5 # ... some computation
6 return x ** 2
7
8 items = range(100)
9

10 with ProcessPoolExecutor() as executor:
11 futures = [executor.submit(slow_task, x) for x in items]
12
13 results = []
14 for future in tqdm(as_completed(futures), total=len(items)):
15 results.append(future.result())
16

Output
100%|============| 100/100 [00:05<00:00, 18.32it/s]

51 / 56

Beyond concurrent.futures

When you need more power:

joblib
Simple API
Memory mapping
Good for NumPy
scikit-learn uses it

Dask
Parallel DataFrames
Larger-than-RAM data
Lazy evaluation
Scales to clusters

Ray
Distributed computing
Actor model
ML focused
Production ready

Start Simple
concurrent.futures handles 90% of use cases. Only reach for specialized tools when you
hit its limits.

52 / 56

Debugging Parallel Code
Parallel bugs are hard to find:

Non-deterministic behavior
Errors in worker processes
Hard to reproduce

Strategies:
1 Start sequential: Make sure code works with max_workers=1
2 Catch exceptions: Always wrap future.result() in try/except
3 Test with small data: Faster iteration, easier to spot issues
4 Use logging: Print statements get mixed up

Golden Rule
If it works with max_workers=1, it should work with more. If not, you have a parallelism bug.

53 / 56

Hands-On Time!
Mini-Project Time!

05_project_exercises.ipynb

Choose your project and apply what you’ve learned

54 / 56

Summary: Your Parallel Python Toolkit

concurrent.futures

ThreadPoolExecutorI/O-bound tasks
API calls
File operations
Network requests

ProcessPoolExecutorCPU-bound tasks
Monte Carlo
Optimization
Backtesting

Key Message
You now have the tools to make your finance code run 4-8x faster. Use them wisely!

55 / 56

Thank You!

Questions?
Key takeaways:

I/O-bound → ThreadPoolExecutor
CPU-bound → ProcessPoolExecutor
Always profile before and after
Chunk small tasks to reduce overhead

Happy parallel programming!

56 / 56

