Data Science and Advanced Programming — Lecture 11

Unsupervised Machine Learning

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

November 24th, 2025 | 12:30 - 16:00 | Internef 263

1/120

Today's Roadmap

k-Means

Evaluating Clusterings (read at home - here for completeness)
Gaussian Mixture Models

Principal Component Analysis (PCA)

Expectation Maximization (read at home - here for completeness)

Hierarchical Clustering

No oA~ wbh e

Density-based Clustering (cont'd)

1/120

Learning Parameters of Probability Distributions

» In many settings not all variables are observed (labeled) in the training data
x; = (x;, hy)

» e.g. Speech recognition: have speech signals, but not phoneme labels.

> e.g. object recognition: have object labels (car, bike), but not part labels
(wheel, door, seat).

» Unobserved variables are called LATENT VARIABLES.

2/120

Recall — Unsupervised Learning

Learning “what normally happens”. v

» No output.

» Clustering: Grouping similar instances.
» Example applications:
» Customer segmentation.
» Image compression: Color
quantization.
» Bioinformatics: Learning motifs.

Clustered data

Original unclustered data

35 2-10 1 2 3 4 5

3/120

Motivation — Clustering

» Clustering, as a kind of unsupervised learning, aims at grouping data points into
clusters.
» Intuition: Data points within
» the same cluster should be close to each other
» different clusters should be far apart from each other
» Applications:

> segmentation of customers (e.g., for marketing campaigns)
» organization/exploration of data (e.g., search results)
» detection of outliers data points

4/120

Clustering: Basic idea

» Basic idea: group together similar instances

» Example: 2D point patterns

5/120

Clustering: Basic idea

» Basic idea: group together similar instances
» Example: 2D point patterns

6/120

Clustering: Basic idea

» Basic idea: group together similar instances
» Example: 2D point patterns

» What could similar mean?

» One option: small Euclidean distance (squared)
dist(%, y) = [|% - ¥l2

» Clustering results are crucially dependent on the measure of similarity (or
distance) between “points” to be clustered

7/120

Clustering: Basic idea in color

o
o

o o 0%, -]
o

A

omg, % °

Sy o a"o
ey © Q‘;%
. . s @ - o @
:;tw b a
& el 090%gs 2 ° Og
"gl"‘ + N o‘g‘p o co
- o -
?-s' .1:{ -] U? o 0?
woan o ©o
L]
+
o
° o = 000%0%9;,
?'r)o .?b'gc
H H . ou - % o & Bog o®
U@c %: o 900
00 P o
% o%o o
= o o2
bl -]
T T T T T T T
o 2 4 [} & 1w 12
x

8/120

Clustering Algorithms

» Partition algorithms (Flat) p: By | - g
> K-Means k ' & D
» Mixture of Gaussians a R ! Jd
|
» Hierarchical algorithms l r‘__llT_l_‘
» Bottom-up - agglomerative
» Top down - divisive }: . % E
Tl 2®

9/120

First (?) Application of Clustering

» John Snow, a London physician plotted the location of cholera
deaths on a map during an outbreak in the 1850s.

» The locations indicated that cases were clustered around
certain intersections where there were polluted wells —
thus exposing both the problem and the solution.

<N

From: Nina Mishra HP Labs

10/120

Clustering Example: Astronomy

SkyCat (http://www.eso.org/sci/observing/tools/skycat.html): Clustered
2 x 10 sky objects into stars, galaxies, quasars, etc. based on radiation emitted in
different spectrum bands

11/120

http://www.eso.org/sci/observing/tools/skycat.html

Another Clustering Example: Genetics

Eisen et al, PNAS 1998

12/120

1. k-Means — Unsupervised ML

Bishop, Chapter 9
» We will start with an unsupervised learning (clustering) problem:

» Given a dataset {xy,...,xy} each x; € RD partition the dataset into K clusters
(e.g. healthy / sick patients).

» Intuitively, a cluster is a group of points, which are close together and far from

others.
2 .
. Séay
0.
0 2ee '%-L‘
wigc. P
Sl
) h &°
-2 0 2

13/120

Distortion Measure

| 2

>

Formally, introduce prototypes (or
cluster centers) py € RP

Use binary r,k, 1 if point n is in cluster
k,0 otherwise (1-of- K coding scheme

again)
Find {uk}, {rmx} to minimize
distortion measure:

N K
J=D okl — pai®
n=1 k=1
e.g. two clusters k=1,2:

J= D lxa =l D lIxn — pi2]®

xn€Cy xn€Co

-2

-2

-2 0

14/120

Minimizing Distortion Measure

» Minimizing J directly is hard

N K
J= Z Z I'nk Hxn - ka”2

n=1 k=1

» However, two things are easy
» If we know g, minimizing J wrt ry
» If we know rp,, minimizing J wrt i
» This suggests an iterative procedure

» Start with initial guess for
» [teration of two steps:

» Minimize J wrt rp
» Minimize J wrt

» Rinse and repeat until convergence

15/120

Determining Membership Variables

» Step 1 in an iteration of K-means is to
minimize distortion measure J wrt. cluster
membership variables rp

N K
J= Z Z Tk || Xn — MkH2

n=1 k=1

» Terms for different data points x, are
independent, for each data point set rp, to

minimize
K
Z I'nk Hxn - llfk||2
k=1

» Simply set r,x = 1 for the cluster center p
with smallest distance.

16 /120

Determining Cluster Centers

» Step 2: fix rpk, minimize J wrt the cluster centers puy

K N

J= Z Z Foic || Xn — ai|? switch order of sums
k=1 n=1

» So we can minimize wrt each py separately

» Take derivative, set to zero:

2 ZLV:l I'nk (Xn - /sz:) =0
FrokXn
G o=

i.e. mean of datapoints x, assigned to cluster k (— “k-Means")

17/120

k-Means Algorithm

» Start with an initial guess for 1

» lteration of two steps:
1. Minimize J wrt 1)
» Assign points to nearest cluster center
2. Minimize J wrt py

» Set cluster center as average of points in cluster

» Rinse and repeat until convergence

18/120

Old Faithful Dataset

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat

Description: (From R manual):
Waiting time between eruptions and the duration of the eruption
for the 0ld Faithful geyser in Yellowstone Mational Park, Wyoming,
USA.

A data frame with 272 observations on 2 variables.

eruptions numeric Eruption time in mins
waiting numeric Waiting time to next eruption

Ol Faithful Eruptions

Time Between Eruptions (minutes)

@5 a6 s

M5 A s

30 35 40
Eruption Time tminutes)

19/120

https://www.stat.cmu.edu/~larry/all-of-statistics/=data/faithful.dat

k-means example

20/120

k-means example

21/120

k-means example

22/120

k-means example

23/120

k-means example

24/120

k-means example

25/120

k-means example

26 /120

k-means example

27/120

k-means example

Next step doesn't change membership — stop

28/120

Cost function J

1000 |

500 \

29/120

k-means Convergence

v

Repeat steps until no change in cluster assignments.
For each step, value of J either goes down, or we stop.

Finite number of possible assignments of data points to clusters, so we are
guaranteed to converge eventually.

Note it may be a local maximum rather than a global maximum to which we
converge.

30/120

Clustering Cars based on Power and Weight

demo/k_means_car.py

import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
load data
cars = pd.read_csv('auto—mpg.data.txt‘,header=None, sep='\s+')
extract power and weight as data matriz X
X = cars.iloc[:, [3,4]1].values
extract origin as target wvalue y
y = cars.iloc[:, 7].values
normalize data
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X) # determine min and maz
X_normalized = min_max_scaler.transform(X)
apply k-Means
km = KMeans(n_clusters=3, random_state=0).fit(X_normalized)
plot cars
U.S. : o/ Europe: © / Japan :@ +
m = ['o' if o==1 else 'x' if 0==2 else '+' for o in y]
Cluster 1 : red / Cluster 2 : blue / Cluster 3 : green
c = ['red' if 1==0 else 'blue' if 1==1 else 'green' for 1 in km.labels_]
for i in range(0,len(X)):
plt.scatter(X[i,0], X[i,1], color=c[il], marker=m[i])
plt.xlabel('Power [hp]')
plt.ylabel('Weight [1b]')
plt.show()

31/120

Clustering Cars based on Power and Weight: Plot

Weight [Ib]

5500

5000

4500

4000

3500

3000

2500

2000

1500

1000
1]

50 100 150 200
Power [hpl

250

32/120

2. Evaluating Clustering: Some Notation

Read at home — here for completeness
» Consider a set of data points D = {xy,...,X,} x;€R"

» Objective: Determine clustering (also: grouping, partitioning)
C:{Cl,...,Ck} with GCD

such that
» clusters are disjoint Vi# j: GN G =0
» each data point is assigned to a cluster

Uc=no

cGec

33/120

Evaluating Clustering

» How can we evaluate the quality of a clustering computed?

» External measures assume that ideal clustering is known (e.g., class labels
assigned to data points)

Z:{/17~--7/\I|} with I;CD

» Internal measures assume no knowledge of ideal clustering (i.e., we only know
the data points and the clustering)

34/120

Purity

» Purity of a cluster is the fraction of data points therein that belongs to the
dominant cluster from the ideal clustering

purity (G;) = |C\ max|C N 1]

» Purity of a clustering is then the weighted average of the purity values of its
clusters

purity(C) = Z ’Cn’ purity (G)

c;eC

35/120

Purity

00 000 0
C1 C2 C3
purity(C1) = 3 purity(C2) = % purity(Cs) = 3

36/120

BetaCV

» BetaCV, as an internal measure, considers the ratio of average distances between
pairs of points within the same or different clusters
VVin /Nin

ou ou

» with N, and Ny, as pairs of data points within the same or within different
clusters

1 1
N =5 |GG =1) Nowe =5 > [CIIG

ceC C,‘,C}GC, Cﬁ’écj

37/120

BetaCV

» BetaCV, as an internal measure, considers the ratio of average distances between
pairs of points within the same or different clusters

VVin /Nin

ou ou

» and W, and W, as the total distance of pairs of data points within the same
or within different clusters

Win :%Z Z d(X,y) Wout :% Z sz(X7Y)

GeC x,ye G Ci,GeCxeGye(

38/120

Dunn Index

» Dunn Index, as another internal measure, compares the minimal distance
between any pair of data points from different clusters against the maximal
distance between any pair of data points from the same cluster.

min d(x,y
xeCiye G, C#G; ()

ma d(x
XGCi,yéC,' (7y)

Dunnindex(C) =

39/120

3. Gaussian Mixture Models

See Bishop (2006), Chapter 9; Murphy (2012), Chapter 11

Mixture of 1D Gaussians

— Component 1
4 ~—— Componsnt 2
—= Mature

40/120

Hard Assignment versus Soft Assignment

» In the K-means algorithm, a hard assignment
of points to clusters is made.

» However, for points near the decision boundary,
this may not be such a good idea.

» Instead, we could think about making a soft
assignment of points to clusters.

41/120

Gaussian Mixture Models

0.5 0.5

» The Gaussian mixture model (or Mixture of Gaussians MoG) models the data
as a combination of Gaussians.

» Above shows a dataset generated by drawing samples from three different
Gaussians.

K
p(x) = Zﬂk/\/(x | i, Xk) . p(zxk=1) = m

k=1

42/120

A Generative Model

» The mixture of Gaussians is a generative model.

» To generate a data point x,, we first generate a value for a - discrete variable
m€{1,...,K}

» We then generate a value x, ~ N (x| pk, Xk) for the corresponding Gaussian

Z
Vo
a"i"
.
J‘ :‘.
x s :
H-
0.
0 0.5 1

43/120

A Graphical Model

» Note z, is a latent variable, unobserved.
» Need to give conditional distributions p(z,) and p(x, | zp)
» The one-of-K representation is helpful here: z,x € {0,1}, z, = (zn1, - - -, Znk)

44/120

Graphical Model — Latent Component Variable

» Use a Bernoulli distribution for p(z,)
> ie p(zk=1)=m
» Parameters to this distribution {7k}

» Must have 0 < 7, <1 and Zle me=1

> p(z0) = [Ty 7™

45/120

Graphical Model — Observed Variable

» Use a Gaussian distribution for p (x, | zs)
» Parameters to this distribution {1k, X}

p(Xn | znk =1) = N (xn | pi, Xi)

K
p(xn| zn) = H/\/(X,, | ok Ek)z"k

k=1

46 /120

A Graphical Model — Joint Distribution

» The full joint distribution is given by:
N
p(x,2) = [] p(20) p(xn | 20)
n=1

N K
— H Hﬂink/\/’(xn | e Te)?

n=1 k=1

47/120

Marginal over Observed (MoG) Variables

» The marginal distribution p(x,) for this model is:

:Zp(xmzn ZP zn Xn’Zn
Zn

K
= mN (X | e Zie)

k=1

» A mixture of Gaussians

48/120

MoG Conditional over Latent Variable

» The conditional p(z,x = 1| x,) will play an important role for learning

» It is denoted by 7 (z,x) can be computed as:

p(znk =]-)P(Xn | Zok = 1)

Znk) = p(zok =11 xp) =
Y = Pl) = = Do | 25~ D)

_ TN (X5 | ok, Xk)
2121 TN (Xn | pj, Xj)

» ~(z,k) is the responsibility of component k for datapoint n

49/120

MoG Learning

Given a set of observations {xi, ..., xy}, without the latent
variables z,, how can we learn the parameters?

Model parameters are 6 = {7y, ik, L}
Answer will be similar to k-means:

» |If we know the latent variables z,, fitting the Gaussians is easy
» If we know the Gaussians pig, X, finding the latent variables is easy

» Rather than latent variables, we will use responsibilities v(z,x)

50 /120

MoG Maximum Likelihood Learning

» Given a set of observations {xi,...,xy}, without the latent variables z,, how can
we learn the parameters?

» Model parameters are 0 = {m, jix, Lk}

» We can use the maximum likelihood criterion:

N K
Op = N >
ML = arg m‘?xgkz}ﬂk (Xn | i k)

N K
= arg mé'axz log {Z TN (Xn | ek, 2k)}

n=1 k=1

» Unfortunately, closed-form solution not possible this time - log of sum rather than
log of product

51/120

MoG Maximum Likelihood Learning - Problem

» Maximum likelihood criterion, 1-D:

N K
1 2
Oy = arg mgaxg log {; Wkﬁ exp {— (xn — 1K)/ (202)}

» Suppose we set i, = x, for some k and n, then we have one term in the sum:

1

V2o
1

ex
V2o P

» In the limit as o, — 0, this goes to oo

Tk

exp { = (xa — 1)/ (207) }
{=(0°/ (20%)}

:7Tk

» So ML solution is to set some g = xp, and o =0 !

52/120

ML for Mixture of Gaussians

» Keeping this problem in mind, we will develop an algorithm for ML estimation of
the parameters for a MoG model

» Search for a local optimum.

» Consider the log-likelihood function

N K
(6)=">log {Zwk/\/’(x,, | e, zk)}
n=1 k=1

» We can try taking derivatives and setting to zero, even though no closed form
solution exists.

53/120

Maximizing Log-Likelihood - Means

N K
00) = Z log {Z TN (Xn | Bk, Ek)}
n=1 k=1

N
TN (Xn | Bk, Xk)

B n—=1 ZJ/NJN (Xn ‘ I’l’J7 2_j)

2 (xo — 1)

N
= 7 (2a) By (0 — p24)
n=1

- Setting derivative to 0 , and multiply by >

N N

Z Y (an) Mk = Z v (an) Xn

n=1 n=1

N N
1
Sy = ﬁk ;"y (an) X, where N, = ;7 (an)

54 /120

Maximizing Log-Likelihood: Means and Covariances

» Note that the mean g is a weighted combination of points x,, using the
responsibilities y (zyk) for the cluster k

> Ny = ZQ’ZI v (znk) is the effective number of points in the cluster

» A similar result comes from taking derivatives wrt. the covariance matrices X :

N
= D 7 (Zak) (0 — 1) (x0 — 14) "

n=1

55/120

Maximizing Log-Likelihood: Mixing Coefficients

» We can also maximize wrt. the mixing coefficients 7y
» Note there is a constraint that >, m, =1
» Use Lagrange multipliers

» End up with: 7, = % average responsibility that component k takes.

56 /120

Three Parameter Types and Three Equations

» These three equations a solution does not make
1N
= — Znk) X
Mok Ny nz:l’}’(nk) Xn

N
1
= ﬁk E v (znk) (Xn — i) (Xn — ﬂk)T
n=1

_ N
7Tk—N

» All depend on 7(z,k), which depends on all 3!

» But an iterative scheme can be used

57/120

EM for Mixtures of Gaussians

P Initialize parameters, then iterate:

» E step: Calculate responsibilities using current parameters

¥ (2m8) = TN (Xn | pk, Xk)
S TN (X | 1,)

» M step: Re-estimate parameters using these y(zx)

LN
=5 ;ﬂznk) Xn
1N
Y= N D 7 (Z0k) (X — 1) (%0 —)"
n=1
_ N
Tk N

» This algorithm is known as the expectation-maximization algorithm (EM)

> Next we describe its general form, why it works, and why it's called EM (but first an
example)

58 /120

The Likelihood

» The form of the Gaussian mixture distribution is governed by the parameters 7, u
and X, where we have used the notation
w={m,... .kt 0 ={p1, ., pkt, X ={X1,... Lk}

» One way to set the values of these parameters is to use maximum likelihood.

» The log of the likelihood function is given by

N K
Inp(X |7, 1, 2) = In {Zﬂk/\f(xn ! Nlozk)}
k=1

n=1

where X = {x1,...,xn}.

59 /120

Problems with optimizing the likelihood

» The situation is now much more complex than with a single Gaussian, due to the
presence of the summation over k inside the logarithm.

» As a result,the maximum likelihood solution for the parameters no longer has a
closed-form analytical solution.

» One approach to maximizing the likelihood function is to use iterative numerical
optimization techniques.

» Gradient methods could be used but are painful to implement. —> Non-convex
optimization problem! (multiple optima possible)

60 /120

Example in one dimension

» Observations xj ... X,
» K =2 Gaussians with unknown s, o2
» Estimation trivial if we know the

source of each observation

. x1+x2+...+x,,b
Hp = o
(XI*N1)2+~~~+(Xn*Un)2
np

2 _
Gb_

L 4 o0 ® OO ® O

61/120

Example in one dimension

» Observations xj ... X,

» K =2 Gaussians with unknown s, o2

» Estimation trivial if we know the
source of each observation

o X1+X2+...+X,,b

Hb= ——7®—

o2 — (a—p1)* 44 (xn—pn)°
b — n
b

62/120

Example: Expectation Maximization in 1d (I1)

» What if we don't know the source?

» If we knew parameters of the
Gaussians (u, 02)

(== oo o OO (=]

63/120

Example: Expectation Maximization in 1d (I1)

» What if we don't know the source?

» If we knew parameters of the
Gaussians (u, 02)

— can guess whether point is more likely
to be a or b.

P(xi | b) P(b)
P(b1X) = 5o Th P(b) + Plx y 2) P(3)
Pla]8)= 21 2exp< 2ab)
7TJb

64/120

EM Algorithm (in 1d)

A fundamental problem:

> we need (,ua,ag) and (Mb,ai) to guess the source of the points.
» we need to know the source to estimate (,ua,ag) and (,ub, 012)).
EM algorithm:
1. Start with two randomly placed Gaussians (ua,aa2) and (ub, ab2).
2. E(xpectation) step:
» for each point: P(b| x;) = does it look like it came from b ?
3. M(aximization)-step:
> adjust (ua,02) and (s, 07) to fit points assigned to them.
4. Iterate until convergence.

65/120

EM in 1d

b

¥

° . O_owe_

a¥ ;' |

-

bixy + baxa + ... + bpxn,

— We could also estimate priors:

1 e\ T T bhitbto+bs
P(xi| b) = ex _ (i = po) 2 2
l a 2 P 202 5o bi(xx—p1) 4.+ ba(Xn — pn)
2noy b op =
b1+b2++bn
bi=P(b|x)= P(xi | b) P(b) aixy + axxo + ...+ anXn,

= P(xi | b) P(b) + P(xi | a) Pta)
ai=P(alx)=1-b

at+a+...+an

P(b) = (b1 + by +...bs) /n
P(a) =1 — P(b)

2 a1 (= p1)’ + -+ an (0 —)’
oy =

aita—+...+an

66 /120

EM in the multidimensional case

» Start with parameters describing each cluster

» Mean p., Covariance X, "size” 7.
» E-step ("Expectation”):

» For each observation/point x;
> Compute “ri.", the probability that it belongs to cluster

m N(x 5 oy, 2N
C.]

» Compute its probability under model c.
» Normalize to sum to one (over clusters c).

TN (X5 e, L) NG N E)
Zc’ 7TC’N (Xi; My Z<:’) r 33: 66
» If x; is very likely under the c-th Gaussian, it gets high

weight.
» Denominator just makes r's sum to one.

fic =

67/120

EM in the multidimensional case

» M-step (”Maximization step”):
» For each cluster (Gaussian) z= ¢
» Update its parameters using the (weighted) data points

N. = Z ric Total responsibility allocated to cluster ¢

]

N . .
Te = WC Fraction of total assigned to cluster c
1 1 .
He = ﬁ g FicXi .= ﬁ E lic (Xi - ,uc) (Xi - /~Lc)
c <
Weighted mean of assigned data weighted covariance of assigned data

(use new weighted means here)

68/120

Expectation-Maximization: Summary

» Likelihood of the data

K

P(Xl,...,XN) = I'I,-'ilzP(Xi\ k)P(k)
k=1

» Each step increases the log-likelihood of our model

N K
Inp(X |7, 1, 2) = In {Zﬂk/\f(xn | Mk,zk)}
n=1 k=1

» lterate until convergence
» Convergence guaranteed — another ascent method.

» Cannot discover k.

69 /120

MoG EM — Example

2 .
 LEn
]
U L]
»
=2
-2 0 (a)

» Same initialization as with K-means before

» Often, K-means is actually used to initialize EM

70/120

MoG EM — Example

2 L]
Sé
.]
0 i el
wihte T
0 “
-2 1
-2 0 (b) 2

Calculate responsibilities 7y (zy«)

71/120

MoG EM — Example

Calculate model parameters {7y, px, Xk} using these responsibilities

72/120

MoG EM — Example

2 L =2 o’
289

|

oS, o e

/74
L €&

) 0 @ 2
Iteration 2

73/120

MoG EM — Example

2 []
L=5 220
o %383
Y
0.
0 « /)eg”
LT
,' .“
-2 ‘5"
=2 0 (e)
Iteration 5

74/120

MoG EM — Example

Toeem g
kU
0 .
LSl A
-.'-“‘
-2 ki
-2 0 (f) 2

Interation 20 — converged

75/120

Gaussian mixture models:d>1

See Bishop (2006) for details

O

Wikt
<
-2

0 (a) 2

-2 o wm -2 " 2
L=2 [: L=5 [P : L=20 5
N '-“gfh - .g,‘ia- T s
‘(:':} -2 (‘.5. -2 .:h.
-2 0 (@ 2 -2 0 (g -2 0o 2

76 /120

Bayesian Information Criterion (BIC)

» How to pick k?
» Probabilistic model:
N K
L =Inp(X | 7,0, %) = S0 In {2150 mV (x| 1k 2 }
» Tries to “fit” the data (maximize likelihood)
» Choose K that makes L as large as possible?
» K =n: each data point has its own "source”
» may not work well for new data points
» Split points into training set T and validation set V
» for each k : fit parameters of T
» measure likelihood of V
» sometimes still best when k =n
» "Occam’s razor":
» Pick the "simplest” of all models that fits the data.
> Assess, e.g., via Bayes Information Criterion (BIC): max,{L — 1/2p log(n)}
» L: Likelihood; p: # Parameters in the model - how simple is the model.

77/120

Hands-on example

https://scikit-learn.org/stable/modules/mixture.html
demo/GMM_scikit_example.py

» Plot the confidence ellipsoids of a mixture of two Gaussians obtained with
Expectation Maximization (GaussianMixture class)

» The model has access to 1,3, and 5 components with which to fit the data. Note
that the Expectation Maximization model will necessarily use ALL components

P In the 5-component example, we can see that the Expectation Maximization
model splits some components arbitrarily, because it is trying to fit too many
components.

Gassian Misture

Gaussian Mixture

78/120

https://scikit-learn.org/stable/modules/mixture.html

Hands-on example 2

» We simulate a bunch of data (e.g., an
ergodic set). — it is in a text file
(ergodic_data.txt - 3 dimensions)

» We apply GMM (build_density.py)

» We can sample data from the fitted
GMM model (sample.py)

08

0.7

0.6

0.5

0.4

03

Observatians

= Sampies from estimated density

0.8

0.9

79/120

GMM — Cars based on Power and Weight

import itertools

import numpy as np

from scipy import linalg

import matplotlib.pyplot as plt

import matplotlib as mpl

from sklearn import mixture

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt

color_iter = itertools.cycle(['navy', 'c', 'cornflowerblue', 'gold','darkorange'l])

load data

cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')
extract power and weight as data matriz X

X = cars.iloc[:, [3,4]].values

extract origin as target value y

y = cars.iloc[:, 7].values

normalize data

min_max_scaler = MinMaxScaler()

min_max_scaler.fit(X) # determine min and maz

X_normalized = min_max_scaler.transform(X)

Fit a Gaussian mizture with EM using five components

gmm = mixture.GaussianMixture(n_components=5, covariance_type='full').fit(X_normalized)

plot_results(X_normalized, gmm.predict(X_normalized), gmm.means_, gmm.covariances_, O,
'Gaussian Mixture')

plt.show()

80/120

Cont.

def plot_results(X, Y_, means, covariances, index, title):
splot = plt.subplot(i, 1, 1 + index)
for i, (mean, covar, color) in enumerate(zip(
means, covariances, color_iter)):

v, w = linalg.eigh(covar)

v = 2. * np.sqrt(2.) * np.sqrt(v)

u = w[0] / linalg.norm(w[0])

as the DP will not use every component it has access to

unless it needs it, we shouldn't plot the redundant

#

components.
if not np.any(Y_ == i):
continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color)

Plot an ellipse to show the Gaussian component

angle = np.arctan(ul[i] / u[0])

angle = 180. * angle / np.pi # convert to degrees

ell = mpl.patches.Ellipse(mean, v[0], v[1], 180. + angle, color=color)
ell.set_clip_box(splot.bbox)

ell.set_alpha(0.5)

splot.add_artist(ell)

plt.xticks(Q))
plt.yticks(Q))
plt.xlabel('Power [hp]')
plt.ylabel('Weight [1b]')
plt.title(title)

81/120

GMM — Cars based on Power and Weight

Gaussian Mixture

o
= .
= £
= :
o . B
7] o !
= n iy
.Ul|‘1l
. o T
-
S
_z.-':'l
et L
7

Power [hp]

82/120

4. Expectation Maximization: A General Version of

EM

» In general, we are interested in maximizing the likelihood

p(X|0) = p(X.Z|0)

z

where X denotes all observed variables, and Z denotes all latent (hidden,
unobserved) variables
» Assume that maximizing p(X | @) is difficult (e.g. mixture of Gaussians)
» But maximizing p(X, Z | 0) is tractable (everything observed)

» p(X,Z] 0) is referred to as the complete-data likelihood function, which we don't
have

83/120

A Lower Bound

» The strategy for optimization will be to introduce a lower bound on the likelihood

» This lower bound will be based on the complete-data likelihood, which is easy to
optimize

» lteratively increase this lower bound

» Make sure we're increasing the likelihood while doing so

84/120

A Decomposition Trick

» To obtain the lower bound, we use a decomposition:

Inp(X,Z|0)=Inp(X|0)+Inp(Z]| X,0O) product rule
Inp(X | 0) = L(q,0) + KL(q||p)

Yoz { p(X, Z | 0)}
~ q9(2)
p(Z| X, 9)}
L(qllp) = - q(Z -
I zz: { q9(Z)
» KL(qgl|l) is known as the Kullback-Leibler divergence (KL-divergence), and is > 0

(next slide) — Hence Inp(X | 8) > L(q,0)
TODO colors

85/120

Kullback-Leibler Divergence

» KL(p(x)||g(x)) is a measure of the difference between distributions p(x) and q(x) :

KL(p(x)[la(x) Zp Iog

» Motivation: average additional amount of information required to encode x using
code assuming distribution g(x) when x actually comes from p(x)

» Note it is not symmetric: KL(q(x)||p(x)) # KL(p(x)||q(x)) in general

» [t is non-negative:

» Jensen's inequality: —In (3> xp(x)) < —>, p(x)Inx
» Apply to KL:

KL(pllg)=—=> p ()Iogp (Zqi)—lnzq(X)ZO

X X

86 /120

Increasing the Lower Bound — E-step

» EM is an iterative optimization technique which tries to maximize this lower
bound: Inp(X | @) > L(q,0)

E step: Fix 8”7, maximize £(g, 0°") wrt g
i.e. Choose distribution ¢ to maximize £
Reordering bound:

L(g.0") = Inp(X|0”") - KL(q|lp)

In p(X"} does not depend on g

Maximum is obtained when K L(g||p) is as small as possible
Occurs when g = p, ie. g(Z) = p(Z| X, 0)
This is the posterior over Z, recall these are the responsibilities
from MoG model

87/120

Increasing the Lower Bound — M-step

M step: Fix g, maximize £(q,0) wrt 0
The maximization problem is on

L(q,0) =>7q(2)Inp(X,Z]0) =3 ,4q(Z)Inq(2)
= 3,p(Z] X,0°9)Inp(X,Z| 0) =X ,p(Z| X,6°) Inp(Z| X,6°)

Second term is constant with respect to 6
First term is In of complete data likelihood, which is assumed easy to optimize
Expected complete log likelihood - what we think complete data likelihood will be

88/120

Why does EM work?

v

In the M-step we changed from 6°'9 to gnew

» This increased the lower bound L, unless we were at a maximum (so we would
have stopped)

v

The E-step set q to make the KL-divergence 0:
inp(X169) = £ (0,69) + Ki(glp) = £ (.67
» Since the lower bound L increased when we moved from 6°'9 to gnew

|np<x‘ 00|d> :£<q790|d> <£(q70neW)
=Inp(X]6"™") — KL(q||p"*")

» So the log-likelihood has increased going from #°'9 to gnew

89/120

Bounding Example

Consider 2 component 1-D MoG with known variances.

90/120

Bounding Example

True likelihood function
Recall we're fitting means 61, 6>

91/120

Bounding Peaks

» Lower bound the likelihood function using averaging distribution g(Z2)
> Inp(X|6) = L(q,0) + KL(a(Z)||p(Z]| X, 0))
» Since q(Z) = p(Z| X,6°?), bound is tight (equal to actual likelihood) at 8 = °'

92/120

Bounding Peaks

» Lower bound the likelihood function using averaging distribution g(Z2)
> Inp(X | 0) = £(g,0) + KL(a(Z)|IP(Z | X,0))
> Since g(Z) = p(Z| X,6°¢), bound is tight (equal to actual likelihood) at 6 = §°¢

93/120

Bounding Peaks

» Lower bound the likelihood function using averaging distribution g(Z2)
> Inp(X|0) = L(q,0) + KL(q(2Z)[|p(Z]| X, 0))
» Since g(Z2) = p(Z| X,6°), bound is tight (equal to actual likelihood) at 6 = §°

94/120

Recall About the EM Algorithm

Some good things about EM: Some bad things about EM:
» no learning rate (step-size) parameter. » can get stuck in local minima.
» automatically enforces parameter P can be slower than conjugate gradient
constraints. (especially near convergence).
» very fast for low dimensions. P requires expensive inference step.
» each iteration guaranteed to improve » is a maximum likelihood/MAP
likelihood. (maximum a posterior) method.

95 /120

EM — Summary

» EM finds local maximum to likelihood

p(X|0)=> p(X,Z|6)
z

P lterates two steps:
» E step “fills” in the missing variables Z (calculates their distribution)
» M step maximizes expected complete log likelihood (expectation wrt E step
distribution)
» This works because these two steps are performing a coordinatewise hill-climbing
on a lower bound on the likelihood p(X | 6)

96 /120

5. Hierarchical Clustering

» k-Means determines a flat clustering of data points; there is no relationship
between the clusters
» Hierarchical clustering determines a sequence of increasingly fine-grained

clusterings
Ci,...,Cp

» C; ={D} contains all data points in a single cluster

v

Cn = {{xi} : x; € D} contains one cluster per data point

» Clustering C; is contained in clustering C;_1

VQGC,-:EIC,GC,-_lijQ G

97 /120

Dendrogram

Sequence of clusterings can be visualized in a dendrogram

G

=}
o

—

15

1.0

05
1
-

()
3
0.0
L
_ 7

mmmmmmmmmmmmmmmmmmmmm

98/120

Hierarchical Agglomerative vs. Divisive Clustering

» Hierarchical Agglomerative Clustering (HAC)

» starts with the most fine-grained clustering C,
» proceeds bottom-up and merges the two closest clusters in C; to obtain the more
coarse-grained clustering C;_1

» Hierarchical Divisive Clustering (HDC)

P starts with the most coarse-grained clustering C;
» proceeds top-down and splits one of the clusters in C;_; to obtain the more
fine-grained clustering C;

99/120

Hierarchical Agglomerative vs. Divisive Clustering

» Hierarchical Agglomerative Clustering (HAC)

» starts with the most fine-grained clustering C,
» proceeds bottom-up and merges the two closest clusters in C; to obtain the more
coarse-grained clustering C;_1

» So far, we can only measure distance between data points, but we need a measure
of distance between clusters

100/ 120

Linkage Criteria

Linkage criteria measure distance between
two clusters based on the distance between
data points therein

Single-Link

d (G, G) =min{d(x,y) | x € C,,y € G}
Complete-Link
6 (G, G) = max{d(x,y) | x € G,y € G}

Average-Link

(G, G) =

101/120

Pseudocode: Hierarchical Agglomerative Clustering

// Start with each data point in a separate cluster
C, ={{xi} : x; €D};

for(int t = n; t > 1; t--) {
// Determine the two clusters closest to each other

Cy,Cy = argmin §(C;,Cy);

C;,CHEC, : CL#C,

// Merge the two clusters
Chl:(CL\{Ci*,C;})U{Ci*UC;‘};
}

102 /120

HAC Example

» Consider the following data points in R?

» With distance matrix d

0.00 1.41 7.00 11.05 14.04
0.00 6.08 10.00 13.04
0.00 4.12 7.07

0.00 3.00

0.00

103 /120

HAC with Single-Link Example

HAC with single-link based on distance matrix d

C1 = {{x1,%2,x3,%4,X5}}

: Co = {{x1,x2}, {x3,X4,x5}}

° C3 = {{x1,x2}, {x3}, {xa,x5}}

« | Cs = {{x1,x2}, {x3}, {xsa},{xs5}}

" E— Cs = {{x1},{x2},{x3}, {xa},{xs}}

~ m 0.00 141 7.00 11.05 14.04
ﬂ' {@) 0.00 6.08 10.00 13.04

A d= 0.00 4.12 7.07

0.00 3.00
— N 0.00

104 /120

HAC with Single-Link Example

HAC with complete-link based on distance matrix d

C1 = {{x1,%2,%3,X4,X5} }

C2 = {{x1,x2,x3}, {x4,%5}}

C3 = {{x1, %2}, {x3}, {x4,x5}}

Ca = {{x1,x2}, {x3}, {xa}, {xs}}
Cs = {{x1},{x2} . {x3}, {xa}, {xs}}

0.00 1.41 7.00 11.05 14.04

o 0.00 6.08 10.00 13.04
< W0 d= 0.00 412 7.07
— 0.00 3.00

0.00

105 /120

Clustering Cars based on Power and Weight

demo/HAC_example.py

import numpy as np

import pandas as pd

from sklearn.preprocessing import MinMaxScaler
from scipy.cluster.hierarchy import linkage
from scipy.cluster.hierarchy import dendrogram
import matplotlib.pyplot as plt

load data
cars = pd.read_csv('auto-mpg.data.txt',header=None, sep='\s+')

keep a sample of 50 cars

cars = cars.sample(50, random_state=0)

extract labels

labels = cars.iloc[:,8].values

extract power and weight as data matriz X
X = cars.iloc[:, [3,4]1].values

normalize data

min_max_scaler = MinMaxScaler ()
min_max_scaler.fit(X) # determine min and maz
X_normalized = min_max_scaler.transform(X)

perform hierarchical agglomerative clustering using complete linkage
clusters = linkage(X_normalized, method='complete', metric='euclidean')

plot dendrogram

dendrogram = dendrogram(clusters, labels=labels)
plt.tight_layout()

plt.ylabel('Euclidean distance')

plt.show()

106 / 120

Clustering Cars based on Power and Weight

(ms) woisnd ay=3es yynowkd
weybnoiq j2uoiod abpop

ax wnubew abpop

si62J '35 abpop

0Z€ HeAys ing

155 Jopessequue Jwe

(ms) snxnj Ainjuad 3a1ngq

J1e |3q 313(0IAYD

(Ms) uoDEM 21L353 HdINg

21efos gg ej=2p 21!qowsplo
ejedwi 33|01A3Yd
ejedwl 33|0IA3YD
eqopiod 13jsfayd

Jopejew Jwe
(ms) 21SSe|2 NQIjeW 33|0JASYD
11 Buejsnuwi puoy
wojsnd jueljea ynowkd
9 |P P402U0D DWe
weybnoiq uojes SSepnd 3|IGowsplo
|3sa1p 0qJn] s505 0abnad
Jouanew pioy
133snp ynowAd
16 epeueib pioy
w240 Jwe

36 21130 230403
1l ew 30403
epissald ej0Ao)
uoneld 13|0IAIYD
16 Bueisnw pioy
015 Anay2
32eq11| BUOIOD B3040}
adnod paquns denuod
929 epzeuw
(ms) 1T uabemsyjon
9Z9 epzew
JOOp-Z J3IjBARD 13]0JASYD
ebaa jaj0unayd
ueljas yanowAid
euued 23040}
2dnod uods $ZT 18l
Jasw uozoy yinowkd
nieqns
(ms) ZT Jneuas
|p nuegns
Jaysep uabemsyjon
1 $ZT ey
TI1IT Iepow :Umﬂ;mv__O}
Jiqqes uabemsyon
00ZT eljoi0 e30h03
122433 Bj0400 B3040}

T T T T

T T
~ o @ w0 =

o
— — o o (=] o
2MIBICIN HIDANIAAT

0.0

107 /120

6. Density-based Clustering

» k-Means as a representative-based clustering method can only find convey clusters
and must assign every data point to a cluster.

» Density-based clustering methods determine clusters as regions having
consistently high density and label isolated data points as noise

» Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

108 /120

Density-Based Clustering

20

t
0 100 200 300 400 500 600

Fig. From Zaki and Meira (2014)

109 /120

DBSCAN — the idea

» Epsilon Neighborhood of a data point x

Ne(x) = {y [d(x,y) < €}

contains all points having distance less than or equal to ¢

» Data point x is called a core to ¢ its epsilon neighborhood contains at least
minpts data points (including x)

» Data point x is called a border point, if it is not a core, but belongs to the epsilon
neighborhood of a core

» All other data points are considered noise

110/120

Core, Border, and Noise

minpts = 6

» Data point x is a core
» Data point y is a border point

» Data point z is noise

111/120

Reachability

» Data point x is directly reachable from data point y, if y is a core and x belongs to
the epsilon neighborhood of y, i.e.

x € N(y)

» Data point x is (density) reachable from data point y,

» if there is a chain of data points xg, ..., x1, so that
X0 =XAX =Yy

V1 < i< [: x;is directly reachable from x;_1

» Reachability is not symmetric, since the data point y could be a core, but the data
point x is not

112 /120

Connectedness and Density-Based Clusters

» Two data points x and y are called connected, if there is a core z, so that both x
and y are reachable from z

» Density-based cluster is a maximal subset of connected data points, i.e., there are
no data points that could be added

113/120

DBSCAN

» Intuition:
» Compute epsilon neighborhoods for all data points
» Determine all cores
» Determine noise
» Grow a new density-based cluster from each data point that does not yet belong to
an already-determined cluster

» Note that DBSCAN is not deterministic, since the assignment of data point to
clusters depends on the order in which data points are considered

114 /120

Pseudo-code DBSCAN

dbScan (P, ¢, minpts) {
// Cores
Cores =);

for(xeD) {
// Compute epsilon neighborhoods

N,(x) = computeNeighborhood(x, ¢);

// Initialize cluster id

id(x) =0;
// Check whether data point is a core -
if (N.(x) = minpis) Cores = CoresU {x}; densityConnected(x, k) {
} for (y € N(x)) {
id(y) = k;
// Grow density-based cluster from each core z 1
Y if (y € Cores) densityConnected(y, k);
for (x € Cores) { }
if(id(x) == @) { }
F++;
id(x) = k;

densityConnected (x,k);
}
}

// Determine clustering, border points, and noise
C=0;
for(i=1...k) C=Cu{{xeD: id(x)=k}};

Noise = {x € D : id(x) = 0};
Border = D\ { Cores U Noise};
115/120

DBSCAN in Action

X X
o g ° ° b . .t B + .t
395 395 ;
,
320 320 1
245 245 1
170 170
95 § - 95 .
3 2 i %
og % [} ° 8 :
P
20 oo 8" o 7B e 4% se00 y g ' . . X,
0 100 200 300 400 500 600 0 100 200 300 400 500 600

116 /120

Clustering Cars based on Power and Weight

demo/DBSCAN_example.py

import numpy as np

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler

from sklearn.cluster import DBSCAN

from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt

load data

cars = pd.read_csv('auto-mpg.data.txt', header=None, sep='\s+')
extract power and weight as data matriz X
X = cars.iloc[:, [3,4]1].values

extract origin as target value y
y = cars.iloc[:, 7].values

normalize data
min_max_scaler = MinMaxScaler()
min_max_scaler.fit(X) # determine min and maz
X_normalized = min_max_scaler.transform(X)

DBSCAN

b = DBSCAN(eps=0.05,min_samples=5,metric='euclidean')
db.fit_predict(X_normalized)

plot cars

U.S. : o / Europe: z / Japan : +
m = ['o' if o==1 else 'x' if 0==2 else '+' for o in y]
Noise : black / Cluster 1 : red / Cluster 2 : blue /
Cluster 3 : green / Cluster 4 : yellow

c = ['black' if 1==-1 else 'red' if 1==0 else 'blue' if 1l==
else 'green' if 1==2 else 'yellow' for 1 in db.labels_]
for i in range(0,len(X)):

plt.scatter(X[i,0], X[i,1], color=c[il, marker=m[i])

plt.xlabel('Power [hp]')

plt.ylabel('Weight [1bs]')

1t . sh
pi-shov () 117 /120

Clustering Cars based on Power and Weight

bs]

Weight

5000 4

4500 1

4000 4

3500 +

3000 +

2500 4

2000 4

1500 A

.... .o $e

E ..-‘!‘ ..
’o .i!! et

.0”.

L
++
; +
@
X5 »
&
* +
50 75 100 125 150 175 200 225

Power [hp]

118120

Summary

» Hierarchical clustering determines a sequence of clusterings that can be visualized
in a dendrogram

» DBSCAN as a density-based clustering method can find non-convex clusters and
is able to label data points as noise

» DBSCAN comes with two hyper parameters € and minpts that need to be
carefully tuned based on the data

119/120

