
Data Science and Advanced Programming — Lecture 10
Introduction to Deep Learning

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

November 17th, 2025 | 12:30 - 16:00 | Internef 263

1 / 110

Today’s Roadmap

This lecture
▶ A brief recap on Machine Learning

Basics
▶ Deep Learning Basics
▶ White-box examples:
▶ The multi-layer perceptron
▶ Feed-forward networks
▶ Network training - SGD
▶ Error back-propagation
▶ Some notes on over-fitting

Throughout lectures - hands-on:
▶ Perceptron
▶ Gradient descent
▶ Artificial neural networks: a simple

multi-layer perceptron implementation
& several examples

1 / 110

The Rise of Neural Networks

2 / 110

Music generated by AI

https://openai.com/research/musenet

3 / 110

https://openai.com/research/musenet

Style Transfer
https://www.tensorflow.org/tutorials/generative/style_transfer

4 / 110

https://www.tensorflow.org/tutorials/generative/style_transfer

Self-Driving Cars

▶ Carnegie Mellon University — 1990’s:
Self Driving Cars S1E2: ALVINN.

▶ Google — 2017: Waymo.

5 / 110

https://www.youtube.com/watch?v=H0igiP6Hg1k
https://www.youtube.com/watch?v=B8R148hFxPw

Coloring Old Movies

AI movie restoration — Scarlett O’Hara HD

6 / 110

https://deepsense.ai/ai-movie-restoration-scarlett-ohara-hd/

Two-Legged Robots

Boston Dynamics’ Atlas Robot Can Do Parkour.

7 / 110

https://www.youtube.com/watch?v=hSjKoEva5bg

A Timeline of Deep Learning

*J. Schmidhuber clearly missing on this slide

8 / 110

Another Timeline
https://leandromineti.github.io/ML-timeline/

9 / 110

https://leandromineti.github.io/ML-timeline/

Why Now?

▶ Neural Networks date back decades, so why the resurgence? (Stochastic Gradient
Descent: 1952, Perceptron: 1958, Back-propagation: 1986, Deep Convolutional
NN: 1995)
▶ Big Data

▶ Large Datasets
▶ Easier Collection and Storage

▶ Hardware
▶ GPUs, TPUs,...

▶ Software
▶ Improved Techniques
▶ Toolboxes

10 / 110

Some Useful Materials

Some useful textbooks:
▶ Machine Learning: a Probabilistic Perspective

K. Murphy, MIT Press, 2012. https://www.cs.
ubc.ca/~murphyk/MLbook/index.html

▶ An Introduction to Statistical Learning
Gareth James, Daniela Witten, Trevor Hastie and
Robert Tibshirani; Springer, 8th editon, 2017.
https://www-bcf.usc.edu/~gareth/ISL/

▶ Deep Learning
Ian Goodfellow and Yoshua Bengio and Aaron
Courville; MIT Press 2016.
http://www.deeplearningbook.org

11 / 110

https://www.cs.ubc.ca/~murphyk/MLbook/index.html
https://www.cs.ubc.ca/~murphyk/MLbook/index.html
https://www-bcf.usc.edu/~gareth/ISL/
http://www.deeplearningbook.org

Recap on Machine Learning

12 / 110

David Donoho (2015). 50 years of Data Science

13 / 110

Data Science
David Donoho (2015). 50 years of Data Science

The activities of Greater Data Science are classified into 6 divisions:
1. Data Exploration and Preparation
2. Data Representation and Transformation
3. Computing with Data
4. Data Modeling
5. Data Visualization and Presentation
6. *Science about Data Science

14 / 110

Set some terminology straight

Artificial intelligence (AI)
Can computers be made to “think”? — a question whose
ramifications we’re still exploring today. A concise definition
of the field would be as follows: The effort to automate
intellectual tasks normally performed by humans.
Machine Learning (ML)

Deep Learning as a particular example of an ML
technique —

15 / 110

Types of Machine Learning

▶ Supervised Learning.
Assume that training data is available from which they can learn to predict a
target feature based on other features (e.g., monthly rent based on area).
▶ Classification.
▶ Regression.

▶ Unsupervised Learning
Take a given dataset and aim at gaining insights by identifying patterns, e.g., by
grouping similar data points.

▶ Reinforcement Learning.

16 / 110

Supervised Regression

▶ Regression aims at predicting a
numerical target feature based on one
or multiple other (numerical) features.

▶ Example: Price of a used car.

▶ x : car attributes
▶ y : price
▶ y = h(x|θ)
▶ h(): model
▶ θ : parameters Fig. from Alpaydin (2014)

17 / 110

Supervised Classification

Example 1: Spam Classification
▶ Decide which emails are Spam and which

are not.
▶ Goal: Use emails seen so far to produce a

good prediction rule for future data.
Example 2: Credit Scoring
▶ Differentiating between low-risk and

high-risk customers from their income and
savings.

▶ Discriminant: IF income > θ2 AND
savings > θ2 THEN low-risk ELSE
high-risk Fig. from Alpaydin (2014)

18 / 110

Handwritten Digit Classification

Movie from the early 90’s. We have come a long way since then...
Handwritten Digit Classification – by Yann Lecun

19 / 110

https://www.youtube.com/watch?v=yxuRnBEczUU

Unsupervised ML

Learning “what normally happens”.
▶ No output.
▶ Clustering: Grouping similar instances.
▶ Example applications:

▶ Customer segmentation.
▶ Image compression: Color

quantization.
▶ Bioinformatics: Learning motifs.

20 / 110

Reinforcement Learning

▶ Learning a policy: A sequence of outputs.
▶ No supervised output but delayed reward.
▶ Credit assignment problem.
▶ Game playing.
▶ Robot in a maze.
▶ Multiple agents, partial observability, …
→ DeepMind’s Q learning.

21 / 110

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Building An ML Algorithm

▶ Optimize a performance criterion using example data or past
experience.

▶ Role of Statistics: Inference from a sample.
▶ Role of computer science: Efficient algorithms to

▶ Solve the optimization problem.
▶ Representing and evaluating the model for inference.

22 / 110

Building An ML Algorithm (II)

Living area (feet 2) Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540
... ...

Given data like this, how can we learn to predict the prices of other houses as a
function of the size of their living areas?

23 / 110

Building An ML Algorithm (III)

▶ x(i): “input” variables (living area in this
example), also called input features.

▶ y(i): “output” / target variable that we
are trying to predict (price).

▶ Training example: a pair (x(i), y(i)).
▶ Training set: a list of m training examples

(x(i), y(i)); i = 1, ...,m.
To perform supervised learning, we must decide
how we’re going to represent
functions/hypotheses h in a computer.

24 / 110

Building An ML Algorithm (IV)

▶ Model/Hypothesis:

hθ(x) = θ0 + θ1x1 + θ2x2

θi’s: parameters
▶ Cost Function:

J(θ) = 1
2

m∑
i=1

(hθ(x(i))− y(i))2

=⇒ Minimize J(θ) in order to obtain
the coefficients θ.

25 / 110

Building An ML Algorithm (V)

In general, Machine Learning in 3 Steps:
▶ Choose a model h(x | θ).
▶ Define a cost function J(θ | x).
▶ Optimization procedure to find θ∗ that minimizes J(θ).

Computationally, we need data, linear algebra, statistics
tools, and optimization routines.

26 / 110

Don’t Re-Invent The Wheel

Plenty of Frameworks out there
▶ Tensorflow
▶ Pytorch
▶ Caffee
▶ Scikit-learn
▶ ...

27 / 110

Artificial Neural Networks

28 / 110

The Brain and The Neuron

▶ Biological systems built of very complex webs of
interconnected neurons.

▶ Highly connected to other neurons, and perform (parallel)
computations by combining signals from other neurons.

▶ Outputs of these computations may be transmitted to one or
more other neurons.

▶ Artificial Neural Networks (ANN) built out of a densely
interconnected set of simple units (e.g sigmoid units).

▶ Each unit takes real-valued inputs (possibly the outputs of other
units) and produces a realvalued output (which may become
input to many other units).

29 / 110

Connectionist Model

▶ Consider humans
▶ Neuron switching time ∼ 0.001 second
▶ Number of neurons ∼ 1010
▶ Connections per neuron ∼ 104.5
▶ Scene recognition time ∼ 0.1 second

▶ 100 inference steps doesn’t seem like enough → a lot of parallel computation
▶ Properties of artificial neural nets (ANN’s):

▶ Many neuron-like threshold switching units
▶ Many weighted interconnections among units
▶ Highly parallel, distributed process

30 / 110

Hebb’s Rule

▶ Hebb’s rule says that the changes in the strength of synaptic connections are
proportional to the correlation in the firing of the two connecting neurons.

▶ So if two neurons consistently fire simultaneously, then any connection
between them will change in strength, becoming stronger.

▶ However, if the two neurons never fire simultaneously, the connection between
them will die away.

▶ The idea is that if two neurons both respond to something, then they
should be connected.

31 / 110

Hebb’s Rule — Intuition

▶ Suppose that you have a neuron somewhere that recognizes your
grandmother (this will probably get input from lots of visual
processing neurons, but don’t worry about that).

▶ Now if your grandmother always gives you a chocolate bar when
she comes to visit, then some neurons, which are happy because
you like the taste of chocolate, will also be stimulated.

▶ Since these neurons fire at the same time, they will be connected
together, and the connection will get stronger over time.

▶ So eventually, the sight of your grandmother, even in a
photo, will be enough to make you think of chocolate.
Sound familiar?

32 / 110

Artificial Neural Networks

▶ Artificial Neural networks arise from
attempts to model human/animal
brains
▶ Many models, many claims of

biological plausibility.
▶ We will focus on multi-layer

perceptron
▶ Mathematical properties rather than

plausibility.

33 / 110

Model of A Neuron (1943)

▶ A picture of McCulloch and Pitts’ (1943) mathematical
model of a neuron.
1. a set of weighted inputs wi that correspond to the

synapses.
2. an adder that sums the input signals (equivalent to the

membrane of the cell that collects electrical charge).
3. an activation function (initially a threshold function)

that decides whether the neuron fires (’spikes’) for the
current inputs.

▶ The inputs xi are multiplied by the weights wi, and the
neurons sum their values.

▶ If this sum is greater than the threshold θ then the
neuron fires; otherwise it does not.

34 / 110

Feed-Forward Networks

In feed-forward networks (a.k.a. multi-layer perceptrons) we let
each basis function be another non-linear function of linear
combination of the inputs:

ϕj(x) = f

 M∑
j=1
· · ·



35 / 110

Limitations of Perceptrons

▶ Perceptrons can only solve linearly separable problems in feature
space.

▶ A canonical example of non-separable problem is X-OR.
▶ Real data sets can look like this too.

36 / 110

The Perceptron: Forward Propagation

37 / 110

The Perceptron: Forward Propagation

Bias term allows you to shift your activation function to the left or the right

38 / 110

The Perceptron: Forward Propagation

Bias term allows you to shift your activation function to the left or the right

39 / 110

The Perceptron: Forward Propagation

40 / 110

A Few Activation Functions

▶ Needs to be differentiable for gradient-based learning (later)
▶ Very useful in practice.
▶ Sigmoid function, e.g., useful for classification (Probability).

41 / 110

Importance of Activation Function
http://openclassroom.stanford.edu/

▶ The purpose of activation functions is to introduce non-linearities into the
network.

▶ anted to build a Neural Network to distinguish green versus red points?

42 / 110

http://openclassroom.stanford.edu/

Importance of Activation Function

The purpose of activation functions is to introduce non-linearities into the network.

▶ Linear activation functions produce
linear decisions no matter the network
size.

▶ Non-linearities allow us to approximate
arbitrarily complex functions.

43 / 110

Perceptron — An Example

Imagine we have a trained network with weights given. How do we compute the
output?

44 / 110

Perceptron — An Example

45 / 110

A Perceptron — Simplified

46 / 110

Building A NN With Perceptrons: A Multi-Output
Perceptron

47 / 110

Single Layer NN

48 / 110

Single Layer NN

49 / 110

Single Layer NN

50 / 110

Fully Connected DNN

51 / 110

Expressiveness of ANN

▶ Boolean functions:
▶ Every Boolean function can be represented by a network with a single hidden layer.
▶ Might require exponential (in number of inputs) hidden units

.
▶ Continuous functions:

▶ Every bounded continuous function can be approximated with arbitrarily small error,
by network with one hidden layer [Cybenko 1989; Hornik et al. 1989].

▶ Deep NN are in practice superior to other ML methods in presence of large data
sets.

52 / 110

Universal Function Approximator
Figs. from Marsland (2014)

53 / 110

Classification Problem

▶ Can I afford a loan for a house?
▶ X: income
▶ Y: savings

54 / 110

Classification Problem

▶ Can I afford a loan for a house?
▶ X: income
▶ Y: savings

55 / 110

Trying to Do a Prediction

56 / 110

Trying to Do a Prediction

57 / 110

Recall: Quantifying The “Loss”

58 / 110

Empirical Loss
The empirical loss measures the total loss over our entire data set.

59 / 110

Cross Entropy Loss Function

▶ Classification: maximum likelihood principle.
▶ Consider a set of m examples X =

{
x(1), . . . , x(m)

}
drawn independently from the

true but unknown data-generating distribution pdata (x; θ).
▶ Let pmodel (x; θ) be a parametric family of probability distributions over the same

space indexed by θ. In other words, pmodel (x; θ) maps any configuration x to a
real number estimating the true probability pdata (x; θ).

▶ Maximum likelihood estimator for the parameters is given by

θML =argmax
θ

pmodel (X;θ)

= argmax
θ

m∏
i=1

pmodel
(

x(i);θ
)

60 / 110

Cross Entropy Loss Function

▶ Numerically more stable: θML = argmax
θ

∑m
i=1 log pmodel

(
x(i);θ

)
▶ Because the arg max does not change when we re-scale the cost function, we can

divide by m to obtain a version of the criterion that is expressed as an expectation
with respect to the empirical distribution p̂data defined by the training data:

θML = argmax
θ

Ex∼p̂data log pmodel (x;θ)

61 / 110

Cross Entropy Loss Function
▶ One way to interpret maximum likelihood estimation is to view it as minimizing

the dissimilarity between the empirical distribution p̂data , defined by the training
set and the model distribution, with the degree of dissimilarity between the two
measured by the KL divergence.

▶ The KL divergence is given by

DKL (p̂data ∥pmodel) = Ex∼p̂data [log p̂data (x)− log pmodel (x)]

▶ The term on the left is a function only of the data-generating process, not the
model.
▶ This means when we train the model to minimize the KL divergence, we need only

minimize
−Ex∼p̂data [log pmodel (x)]

▶ this of course the same as the maximization in equation.
▶ Any loss consisting of a negative log-likelihood is a cross-entropy between the

empirical distribution defined by the training set and the probability distribution
defined by model.

62 / 110

Binary Cross Entropy Loss
Our example was a classification problem with output (0 or 1)

63 / 110

Mean Squared Error (MSE)

64 / 110

Network Training

We want to find the network weights that achieve the lowest loss!

W∗ = argmin
W

1
n

n∑
i=1
L
(

f
(

x(i);W
)
, y(i)

)
W∗ = argmin

W
J(W)

65 / 110

Gradient Descent in Weight Space

Goal: Given (xd, yd)d∈D find w to minimize J(w) = 1
2
∑
d∈D

(fw (xd)− yd)
2

Fig. from Cho & Chow, Neurocomputing 1999

This error measure defines a Surface over
the hypothesis (i.e. weight) space

66 / 110

Gradient Descent in Weight Space

▶ −W∗ = argmin
W

J(W)

▶ Randomly pick an initial (w0,w1)

▶ Compute gradient
▶ Take small steps in the opposite

direction of gradient.
▶ Repeat until convergence

67 / 110

Recall Parameter Optimization

▶ For either of these problems, the error
function J(w) is nasty (E(w) in the
figure)

▶ Nasty = non-convex
▶ Non-convex = has local minima

68 / 110

Descent Methods In General

▶ The typical strategy for optimization problems of this sort is a descent method:

w(τ+1) = w(τ) +∆w(τ)

▶ These come in many flavors
▶ Gradient descent ∇J

(
w(τ)

)
▶ Stochastic gradient descent ∇Jn

(
w(τ)

)
▶ Newton-Raphson (second order) ∇2

▶ All of these can be used here, stochastic gradient descent is particularly effective -
Redundancy in training data, escaping local minima.

69 / 110

Gradient Descent Algorithm

Algorithm:
1. Initialize weights randomly ∼ N

(
0, σ2

)
2. Loop until convergence:
3. Compute gradient, ∂J(W)

∂W ←− Can be computationally expensive
4. Update weights, W←W− η ∂J(W)

∂W
5. Return weights

70 / 110

Gradient Descent Algorithm

Algorithm:
1. Initialize weights randomly ∼ N

(
0, σ2

)
2. Loop until convergence:
3. Compute gradient, ∂J(W)

∂W ←− All that matters to train a NN
4. Update weights, W←W− η ∂J(W)

∂W , where η is the learning rate
5. Return weights

71 / 110

Stochastic Gradient Descent

Algorithm
1. Initialize weights randomly ∼ N

(
0, σ2

)
2. Loop until convergence:
3. Pick single data point i
4. Compute gradient, ∂Ji(W)

∂W ←− Can be noisy
5. Update weights, W←W− η ∂J(W)

∂W
6. Return weights

72 / 110

Stochastic (mini-batch) Gradient Descent

Algorithm
1. Initialize weights randomly ∼ N

(
0, σ2

)
2. Loop until convergence:
3. Pick batch of B data points
4. Compute gradient, ∂J(W)

∂W = 1
B
∑B

∂J=1
∂Jk(W)
∂W

5. Update weights, W←W− η ∂J(W)
∂W

6. Return weights

73 / 110

Mini-Batches While Training

▶ More accurate estimation of gradient
▶ Smoother convergence
▶ Allows for larger learning rates
▶ Mini-batches lead to fast training!
▶ Can parallelize computation + achieve significant speed increases on GPU’s
▶ Note: a complete pass over all the patterns in the training set is called an epoch.

74 / 110

Computing Gradients: Error Backpropagation

▶ How does a small change in one weight (e.g., w2) affect the final loss J(W)?

▶ Chain rule
▶ Repeat this for every weight in the network using gradients from later

layers

75 / 110

Computing Gradients: Error Backpropagation

▶ How does a small change in one weight (e.g., w2) affect the final loss J(W)?
▶ Chain rule

▶ Repeat this for every weight in the network using gradients from later
layers

75 / 110

Computing Gradients: Error Backpropagation

▶ How does a small change in one weight (e.g., w2) affect the final loss J(W)?
▶ Chain rule
▶ Repeat this for every weight in the network using gradients from later

layers

75 / 110

Training Neural Networks

See https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf

76 / 110

https://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf

Loss Function: Can Be Difficult to Optimize

▶ Remember:
▶ Optimization through gradient descent: W←W− η ∂J(W)

∂W▶ How can we set the learning rate?

77 / 110

Setting The Learning Rate

▶ Small learning rate converges slowly and gets stuck in false local minima
▶ Design an adaptive learning rate that “adapts” to the landscape.

78 / 110

A Few Variants of SGD

For more details, see https://arxiv.org/pdf/1609.04747.pdf, and also
https://ruder.io/optimizing-gradient-descent/

79 / 110

https://arxiv.org/pdf/1609.04747.pdf
https://ruder.io/optimizing-gradient-descent/

Weight Initialization
▶ Before the training process starts: all weights vectors must be initialized with some numbers.

▶ There are many initializers of which random initialization is one of the most widely
known ones (e.g., with a normal distribution).

▶ Specifically, one can configure the mean and the standard deviation, and once again
seed the distribution to a specific (pseudo-)random number generator.

▶ which distribution to use, then?
▶ random initialization itself can become problematic under some conditions: you may

then face the vanishing gradients and exploding gradients problems.
▶ What to do against these problems?

▶ e.g. Xavier & He initialization (available in Keras)
▶ They are different in the way how they manipulate the drawn weights to arrive at

approximately 1 . By consequence, they are best used with different activation
functions.

▶ Specifically, He initialization is developed for ReLU based activating networks and by
consequence is best used on those. For others, Xavier (or Glorot) initialization
generally works best.

See, e.g., Glorot & Bengio (2010) - http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf; He et al.
(2015) - https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_
into_ICCV_2015_paper.pdf

80 / 110

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/ He_Delving_Deep_into_ICCV_2015_paper.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/ He_Delving_Deep_into_ICCV_2015_paper.pdf

Vanishing Gradients

▶ Deep learning community often deals with two types of problems during training:
vanishing gradients (and exploding) gradients.
▶ Vanishing gradients

▶ the backpropagation algorithm, which chains the gradients together when computing
the error backwards, will find really small gradients towards the left side of the
network (i.e., farthest from where error computation started).

▶ This problem primarily occurs e.g. with the Sigmoid and Tanh activation functions,
whose derivatives produce outputs of 0 < x′ < 1, except for Tanh which produces
x′ = 1 at x = 0.

▶ Consequently, when using Tanh and Sigmoid, you risk having a suboptimal model
that might possibly not converge due to vanishing gradients.

▶ ReLU does not have this problem - its derivative is 0 when x < 0 and is 1 otherwise.
▶ It is computationally faster. Computing this function - often by simply maximizing

between (0, x) - takes substantially fewer resources than computing e.g. the sigmoid
and tanh functions. By consequence, ReLU is the de facto standard activation
function in the deep learning community today.

81 / 110

Vanishing Gradients

82 / 110

Vanishing Gradients

Fig. From Goodfellow et al. (2016)

83 / 110

Swish Activation Function
See, P Ramachandran, B Zoph, Q V. Le (2017) - https://arxiv.org/pdf/1710.05941v1.pdf

▶ Nevertheless, it does not mean that it cannot
be improved.
▶ Swish activation function.
▶ Instead, it does look like the de facto standard

activation function, with one difference: the
domain around 0 differs from ReLU.

▶ Swish is a smooth function. That means that
it does not abruptly change direction like ReLU
does near x = 0.
▶ Swish is non-monotonic. It thus does not

remain stable or move in one direction, such
as ReLU.

▶ It is in fact this property which separates
Swish from most other activation functions,
which do share this monotonicity.

▶ In applications - Swish could be better than
ReLu.

84 / 110

Intermezzo — Action Required

▶ Let’s look (again) at this notebook for 2 minutes: →
01_GradientDescent_and_StochasticGradientDescent.ipynb

85 / 110

A Geometric Interpretation
▶ In 3D, the following mental image may prove useful. Imagine two sheets of

colored paper: one red and one blue.
▶ Put one on top of the other.
▶ Crumple them together into a small ball. That crumpled paper ball is your input

data, and each sheet of paper is a class of data in a classification problem.
▶ What a neural network (or any other machine-learning model) is meant to do is

figure out a transformation of the paper ball that would uncrumple it, so as to
make the two classes cleanly separable again.

▶ With deep learning, this would be implemented as a series of simple
transformations of the 3D space, such as those you could apply on the paper ball
with your fingers, one movement at a time.

Fig. from Chollet 2017

86 / 110

Notes On Overfitting

87 / 110

Early Stopping
Stop training before we have a chance to overfit

88 / 110

Notes On Regularization

▶ Regularization is a technique that constrains our optimization problem to
discourage complex models.

▶ We use it to improve the generalization of our model on unseen data.

89 / 110

Regularization in NN: Dropout
Srivastava et al., 2014 --- http: //jmlr.org/papers/v15/srivastava14a.html

▶ During training, randomly set some activations to 0
▶ Typically ’drop’ 50% of activations in layer
▶ Forces network to not rely on any node

90 / 110

Regularization In NN: Dropout

▶ It is an efficient way of performing model averaging with neural networks.
▶ Can be interpreted as some sort of bagging.
▶ Now, we assume that the model’s role is to output a probability distribution. In

the case of bagging, each model i produces a probability distribution p(i)(y | x).
▶ The prediction of the ensemble is given by the arithmetic mean of all these

distributions:
1
k

k∑
i=1

p(i)(y | x)

▶ In the case of dropout, each sub-model defined by mask vector µ defines a
probability distribution p(y | x, µ).

▶ The arithmetic mean over all masks is given by
∑

p(µ)p(y | x,µ) where p(µ) is
the probability distribution that was µ use to sample µ at training time.

91 / 110

Remark: Batch Normalization

▶ https://arxiv.org/abs/1502.03167
▶ Batch normalization is used to stabilize and perhaps accelerate the learning

process.
▶ It does so by applying a transformation that maintains the mean activation close

to 0 and the activation standard deviation close to 1 .
▶ Suppose we built a neural network with the goal of classifying gray-scale images.

The intensity of every pixel in a gray-scale image varies from 0 to 255. Prior to
entering the neural network, every image will be transformed into a 1 dimensional
array. Then, every pixel enters one neuron from the input layer. If the output of
each neuron is passed to a sigmoid function, then every value other than 0 (i.e. 1
to 255) will be reduced to a number close to 1 . Therefore, it’s common to
normalize the pixel values of each image before training. Batch normalization, on
the other hand, is used to apply normalization to the output of the hidden layers.

92 / 110

https://arxiv.org/abs/1502.03167

Building an MLP From Scratch
Marsland (2014)

Computing the computational complexity
of this algorithm is very easy.
▶ The recall phase loops over the

neurons, and within that loops over
the inputs, so its complexity is O(mn).

▶ The training part does this same
thing, but does it for T iterations, so
costs O(Tmn).

93 / 110

Perceptron Implementation
Marsland (2014)

for data in range(nData): # loop over the input vectors
for n in range(N) : # loop over the neurons
Compute sum of weights times inputs for each neuron
Set the activation to 0 to start

activation[data][n]= 0
Loop over the input nodes (+1 for the bias node)
for m in range(M+1) :

activation[data][n] += weight[m][n] * inputs[data][m]
Now decide whether the neuron fires or not
if activation[data][n] > 0 :

activation[data][n] = 1
else:

activation [data][n] = 0

Compute activations
activations = np.dot(inputs,self.weights)
Threshold the activations
return np.where(activations>0,1,0)

94 / 110

Perceptron Implementation (II)

▶ The weight update for the entire network can be done in one line (where eta is
the learning rate, η):

self.weights-=eta*np.dot(np.transpose(inputs),self.activations-targets)

95 / 110

96 / 110

Recipe For Using MLP

▶ Select inputs and outputs for your problem
▶ Before anything else, you need to think about the problem you are trying to solve

and make sure that you have data for the problem, both input vectors and target
outputs.

▶ At this stage, you need to choose what features are suitable for the problem and
decide on the output encoding that you will use - standard neurons or linear nodes.

▶ These things are often decided for you by the input features and targets that you
have available to solve the problem.

▶ Later on in the learning it can also be useful to re-evaluate the choice by training
networks with some input feature missing to see if it improves the results at all.

97 / 110

Recipe For Using MLP (II)

▶ Normalize inputs
▶ Re-scale the data by subtracting the mean value from each element of the input

vector, and divide by the variance (or alternatively, either the maximum or minus the
minimum, whichever is greater).

▶ Split the data into training, testing, and validation sets
▶ You cannot test the learning ability of the network on the same data that you

trained it on, since it will generally fit that data very well (often too well, overfitting
and modeling the noise in the data as well as the generating function).

▶ Recall: we generally split the data into three sets, one for training, one for testing,
and then a third set for validation, which is testing how well the network is learning
during training.

98 / 110

Recipe For Using MLP (III)

▶ Select a network architecture
▶ You already know how many input nodes there will be, and how many output

neurons.
▶ You need to consider whether you will need a hidden layer at all, and if so how many

neurons it should have in it.
▶ You might want to consider more than one hidden layer.
▶ The more complex the network, the more data it will need to be trained on, and the

longer it will take.
▶ It might also be more subject to over-fitting.
▶ The usual method of selecting a network architecture is to try several with different

numbers of hidden nodes and see which works best.

99 / 110

Recipe For Using MLP (IV)

▶ Train a network
▶ The training of the NN consists of applying the MLP algorithm to the training data.
▶ This is usually run in conjunction with early stopping, where after a few iterations of

the algorithm through all of the training data, the generalization ability of the
network is tested by using the validation set.

▶ The NN is very likely to have far too many degrees of freedom for the problem, and
so after some amount of learning it will stop modeling the generating function of the
data, and start to fit the noise and inaccuracies inherent in the training data. At this
stage the error on the validation set will start to increase, and learning should be
stopped.

▶ Test the network
▶ Once you have a trained network that you are happy with, it is time to use the test

data for the first (and only) time. This will enable you to see how well the network
performs on some data that it has not seen before, and will tell you whether this
network is likely to be usable for other data, for which you do not have targets.

100 / 110

Action Required — MLP

▶ The implementation is a batch version of the algorithm, so that weight updates
are made after all of the input vectors have been presented.

▶ The central weight update computations for the algorithm can be implemented as:

deltao=(targets-self.outputs)*self.outputs*(1.0-self.outputs)
deltah = self.hidden(1.0-self.hidden)*np.dot(deltao,np.transpose(self.weights2))

updatew1 = np.zeros((np.shape(self.weigths1)))
updatew2 = np.zeros((np.shape(self.weigths2)))

updatew1 = eta*(np.dot(np.transpose(inputs),deltah[:,:-1]))
updatew1 = eta*(np.dot(np.transpose(self.hidden),deltao))

self.weights1 += updatew1
self.weights2 += updatew2

101 / 110

Evaluating A Classifier

▶ How can we assess the prediction quality of a classifier?
▶ Initially, we’ll consider the case of binary classification (and extend it later to

multi-class classification).
▶ Confusion matrix shows the performance of a classifier.

Predicted
0 (No) 1 (Yes)

Actual 0 (No) True Negatives (TN) False Positives (FP)
1 (Yes) False Negatives (FN) True Positives (TP)

102 / 110

Action Required — MLP (II)

▶ There are a few improvements that can be made to the algorithm, and there are
some important things that need to be considered:
▶ how many training data points are needed
▶ how many hidden nodes should be used
▶ how much training the network needs

▶ We will look at the improvements first, and then move on to practical
considerations.

▶ The first thing that we can do is check that this MLP can indeed learn the logic
functions, especially the XOR.

▶ See 02_Multi-layer_Perceptron.ipynb

103 / 110

Recall: Different Activations
▶ In the algorithm described above, we used sigmoid neurons in the hidden layer and

the output layer.
▶ This is fine for classification problems, since there we can make the classes be 0

and 1.
▶ However, we might also want to perform regression problems, where the output

needs to be from a continuous range, not just 0 or 1 .
▶ The sigmoid neurons at the output are not very useful in that case. We can

replace the output neurons with linear nodes that just sum the inputs and give
that as their activation.

▶ This does not mean that we change the hidden layer neurons; they stay exactly
the same, and we only modify the output nodes.

▶ They are not models of neurons anymore, since they don’t have the characteristic
fire/don’t fire pattern.

▶ Even so, they enable us to solve regression problems, where we want a real
number out, not just a 0/1 decision.

104 / 110

Different Activation Function
02_Multi-layer_Perceptron.ipynb

Different types of output neurons
if self.outtype == 'linear':

return outputs
elif self.outtype == 'logistic':

return 1.0/(1.0+np.exp(-self.beta*outputs))
elif self.outtype == 'softmax':

normalisers = np.sum(np.exp(outputs),axis=1)*np.ones((1,np.shape(outputs)[0]))
return np.transpose(np.transpose(np.exp(outputs))/normalisers)

else:
print("error")

105 / 110

Test — Iris Data Set
https://archive.ics.uci.edu/ml/datasets/Iris

106 / 110

Test — MNIST

▶ http://yann.lecun.com/exdb/mnist/
▶ The MNIST database of handwritten digits, available from this page, has a

training set of 60,000 examples, and a test set of 10,000 examples. It is a subset
of a larger set available from NIST. The digits have been size-normalized and
centered in a fixed-size image.

▶ MNIST: Modified National Institute of Standards and Technology database.
▶ Action required - see 02_Multi-layer_Perceptron.ipynb.

107 / 110

http://yann.lecun.com/exdb/mnist/

Action Required
Look at the test functions on the right-hand side*.
Pick three of those test functions (from Genz
1987).

▶ Approximate a 2-dimensional function stated
below with Neural Nets based 10,50,100,500
points randomly sampled from [0, 1]2.
Compute the average and maximum error.

▶ The errors should be computed by generating
1,000 uniformly distributed random test
points from within the computational domain.

▶ Plot the maximum and average error as a
function of the number of sample points.

▶ Repeat the same for 5-dimensional and
10-dimensional functions. Is there anything
particular you observe?

*Choose the parameters w and c in meaningful ways.

108 / 110

Action Required (II)

▶ Play with the architecture.
▶ Number of hidden layers.
▶ activation functions.
▶ choice of the stochastic gradient descent algorithm.
▶ Monitor the performance with respect to the architecture.

109 / 110

Questions?

110 / 110

