
Data Science and Advanced Programming — Lecture 1
Introduction to the course logistics, Computer Hardware and Software

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

September 15th, 2025 | 12:30 - 16:00 | Internef 263

1 / 118

What is this course about?

1 / 118

Roadmap of the course

▶ Part I: Python Foundations (Weeks 1–6)
▶ Part II: Basics of Data Science (Weeks 7–11)
▶ Part III: Advanced Programming & Wrap-Up (Weeks 12-14)
▶ Software Engineering (distributed across the lectures)
▶ Libraries

2 / 118

Data Science

The activities of Greater Data Science are classified into 6 divisions:
1. Data Exploration and Preparation
2. Data Representation and Transformation
3. Computing with Data
4. Data Modeling
5. Data Visualization and Presentation
6. *Science about Data Science

→ For all those activities, you need to be able to program a computer.

3 / 118

To become a Data Scientist (n.):

Data Scientist (n.):
Person who is better at statistics than any software engineer and better at software
engineering than any statistician.

4 / 118

Course Schedule: Part I (Weeks 1–6)

▶ Week 1 (Sep 15): Course Overview, Setup, Unix Basics
▶ Week 2 (Sep 22): No Class – Swiss Federal Fast
▶ Week 3 (Sep 29): Python Fundamentals I (Basics, Control Flow, Git)
▶ Week 4 (Oct 6): Python Fundamentals II (Functions, Data Structures,

Recursion)
▶ Week 5 (Oct 13): Special Session: Generative AI (Guest Lecture)
▶ Week 6 (Oct 20): Python Fundamentals III (OOP, Classes, Efficiency,

Debugging)

5 / 118

Course Schedule: Part II & III (Weeks 7–14)

▶ Week 7 (Oct 27): Linear Regression
▶ Week 8 (Nov 3): Classification
▶ Week 9 (Nov 10): Unsupervised Learning
▶ Week 10 (Nov 17): Deep Learning Primer
▶ Week 11 (Nov 24): Best Practices in Data Science
▶ Week 12 (Dec 1): Introduction to High-Performance Computing
▶ Week 13 (Dec 8): High-Performance Computing with Python
▶ Week 14 (Dec 15): Capstone Project Presentations & Wrap-Up

6 / 118

What is this course about?

▶ This is a VERY FAST-paced course! → Solve the problem sets when they come
out.

▶ Not a regular programmer? PRACTICE. PRACTICE? PRACTICE!
▶ Programming is like Sports/ Playing an instrument: → You CANNOT passively

absorb programming as a skill.
▶ Look at the example codes before the lecture and follow along.
▶ Don’t be afraid to try out the codes in the lectures!

→ We want to acquire skills, not pure knowledge

7 / 118

“Non scholae sed vitae”: Admin and Logistics

▶ Meeting time: Mondays, 12:30 - 15:15.
▶ Exercises: Weekly, Mondays 15:15 – 16:00 (details communicated by the TAs).
▶ Lecturer: Simon Scheidegger (simon.scheidegger@unil.ch).
▶ TA team: Anna Smirnova (anna.smirnova@unil.ch; TA lead), Francesco

Brunamonti (francesco.brunamonti@unil.ch), Zhongshan Chen
(zhongshan.chen@unil.ch).

▶ Nuvolos Cloud Support: support@nuvolos.cloud
▶ Course Website: Lecture notes are on Nuvolos.cloud
▶ To enroll in this class, please click on this enrollment key, and follow the steps.
▶ E-office hours for details/exercises: ask the TAs directly.
▶ Common questions, I will answer at the beginning of every lecture.

8 / 118

https://app.nuvolos.cloud/enroll/class/RshD654gzU4

Lecture Materials & Questions for the class

▶ Lecture Materials and questions related to the lecture
can/should be posted ahead of time on this link:

Class Website

9 / 118

https://ap-unil-2025.github.io/course-materials/

Your lecturer: Simon Scheidegger

▶ Associate Prof. in Economics.
▶ Visiting Senior Fellow at the Grantham Research Institute, London School of

Economics.
▶ BIS Research Fellow.
▶ Research in Computational finance and economics, Deep learning, Climate change

economics, and Machine learning applied to economics and finance,
high-performance computing, macro-finance.

▶ Associate Editor, The Journal of Financial Econometrics.
▶ Find some of my research here in case you are interested.

10 / 118

https://sites.google.com/site/simonscheidegger/publications?authuser=0

The TA team

▶ Anna Smirnova: Ph.D. student in Economics.
▶ Francesco Brunamonti: Ph.D. student in Finance.
▶ Zhongshan Chen: Ph.D. student in Finance.

11 / 118

Prerequisites — What do you need to know?

You should know how to do math:
▶ Multivariate calculus
▶ Probability/statistics
▶ A bit of Algorithms / Big O notation
▶ Linear Algebra
▶ Optimization

Assignments will be in Python

12 / 118

Enhance your productivity: manage your work/codes with Github

▶ Open a free GitHub
account!

▶ github.com
▶ Soon, we will learn

how to use Git

13 / 118

https://github.com/

Grading

▶ Every student has to provide a capstone project that illustrates what was learned.
▶ Each student individually has to propose a data science project and work on it

over the course of the semester.
▶ The due date to submit the project is in the last week of the semester.
▶ The deliverables are:

▶ a report of about 10 pages lengths.
▶ a GitHub repository with the related code and data.
▶ a video recording of a maximum of 10 minutes length that presents the project, the

findings, etc.
▶ We will award the grades based on whether the captstone project demonstrates an

understanding of the material. There will be no exams.

14 / 118

Previous projects

▶ A few success stories out of this class
▶ Florence Hugard (now at E4S at EPFL)
▶ Malik Lechekhab (Ph.D. student in computational science at USI Lugano)
▶ Tim Holt (Ph.D. student in computational science at USI Lugano)
▶ → all got a grade of 6 in their projects.
▶ Other examples that got a top grade see on Nuvolos in the folder:

capstone_project/examples

15 / 118

Why Data Science?

“We are drowning in information and starving for
knowledge.”

— Rutherford D. Roger

16 / 118

Big Data and its availability
https://ourworldindata.org/internet

17 / 118

https://ourworldindata.org/internet

Big Data and its availability
http://www.live-counter.com/how-big-is-the-internet

Size of the internet as we speak: TBD Petabytes
▶ 1 Gigabyte ∼ 1000 MB
▶ 1 Terabyte ∼ 1000 GB
▶ 1 Petabyte ∼ 1000 TB
▶ 1 Exabyte ∼ 1000 PB
▶ 1 Zettabyte ∼ 1000 EB

1 Gigabyte: If an author writes a book of about 190 pages, more specifically, of
383,561 characters (with spaces and punctuation included) every week for 50 years —
this would be a billion letters or bytes.
1 Exabyte: 212 million DVDs weighing 3,404 tons.
1 Zettabyte: 1,000,000,000,000,000,000,000 bytes or characters.
This, printed on graph paper (with one letter in each mm2 square) would be a paper
measuring a billion km. The entire surface of the Earth (510 million km2) would be
covered by a layer of paper almost twice.

18 / 118

http://www.live-counter. com/how-big-is-the-internet

Other sources of Big Data

▶ Scientific experiments
▶ CERN (e.g., LHC) generates ∼

25 petabytes per year (2012).
▶ LIGO generates ∼ 1 Petabyte

per year
▶ Numerical computations
▶ …

https://www.olcf.ornl.gov/summit/

https://home.cern/

https://www.ligo.
caltech.edu/

19 / 118

https://www.olcf.ornl.gov/summit/
https://home.cern/
https://www.ligo.caltech.edu/
https://www.ligo.caltech.edu/

The need for Data Analytics

▶ Widespread use of personal computers
and wireless communication leads to
“big data”.

▶ We are both producers and consumers
of data.

▶ Data is often not random, it has
structure, e.g., customer behavior.

▶ We need “big theory” to extract that
structure from data for
▶ Understanding the data-generating

process.
▶ Making predictions for the future.

=⇒ We need Data Analytics

20 / 118

The purpose of Data Analytics
Xia, B. S., & Gong, P. (2014). Review of business intelligence through data analysis. Benchmarking: An International
Journal, 21(2), 300-311

Data analysis is a process of
▶ inspecting data
▶ cleansing data
▶ transforming data
▶ modeling data

with the goal of
1. discovering useful

information.
2. informing conclusions.
3. supporting decision-making.

Data analysis has multiple facets
and approaches, encompassing
diverse techniques under a variety
of names, while being used in
different business, science, and
social science domains.
In today’s business, data analysis
is playing a role in
▶ making decisions more

scientific.
▶ helping the business achieve

effective operation.

21 / 118

Data Mining

Data mining is the process of discovering patterns in large data sets involving methods
at the intersection of machine learning, statistics, and database systems.
▶ Retail: Market basket analysis,

Customer relationship management
(CRM).

▶ Finance: Credit scoring, fraud
detection, trading.

▶ Manufacturing: Control, robotics,
troubleshooting.

▶ Medicine: Medical diagnosis.
▶ Telecommunications: Spam filters,

intrusion detection.
▶ Bioinformatics: Motifs, alignment.
▶ Web mining: Search engines

22 / 118

Why Machine Learning?

▶ Machine learning aims at gaining insights from data and making predictions
based on it.

▶ Build a model that is a good and useful approximation to the data.
▶ Machine learning methods have been investigated for more than 60 years, but

became mainstream only recently due to more data being available and advances
in computing power (“Moore’s Law”).

▶ There is no need to “learn” to calculate, for example, the payroll.
▶ Learning is used when:

▶ Human expertise does not exist (navigating on Mars).
▶ Humans are unable to explain their expertise (speech recognition).
▶ Solution changes in time (routing on a computer network).
▶ Solution needs to be adapted to particular cases (user biometrics).

▶ You’re relying on machine learning every day, maybe without being aware of it!
You certainly use a Smart Phone?

23 / 118

Speed of Scientific Discovery

Caption

24 / 118

Set some terminology straight

Artificial intelligence (AI)
Can computers be made to “think”? — a question whose
ramifications we’re still exploring today. A concise definition
of the field would be as follows: The effort to automate
intellectual tasks normally performed by humans.
Machine Learning (ML)

Deep Learning as a particular example of an ML
technique

25 / 118

ML – the “coolest thing” in science

“A breakthrough in machine learning would be worth ten Microsofts”
— Bill Gates

Dozens of Billions/year USD$ globally spend on AI & ML.

26 / 118

Structured Data

▶ We often deal with structured data.
▶ Example: Data about monthly rent of real estate in a city.

27 / 118

Unstructured and Semi-structured Data

▶ Many interesting datasets are unstructured, typically natural language texts
written by humans, or semi-structured, interleaving structured and unstructured
data.

▶ Example: Newspaper articles with assigned categories.

28 / 118

Feature Types (I)

When working with structured data, we distinguish different types of features,
depending on which operations can be applied.

Dataset consists of five features.

29 / 118

Feature Types (II)

▶ Nominal features can be compared (==, !=) and counted (e.g., gender of a
person, color of a car).

▶ Ordinal features can, in addition, be compared (<, >) (e.g., customer
satisfaction level, energy class of car).

▶ Numerical features allow in addition for arithmetic operations (+, -, *, /), so
that we can compute the difference between values, compute their mean, compute
their variance, etc. (e.g., the fuel consumption of a car, income of a household).

30 / 118

Feature Types (III)

Area: Num; EstateType: Nom; DistanceToCenter: Num; EnergyClass: Ord; MonthlyRent:Num.

31 / 118

ML Applications

▶ Association.
▶ Supervised Learning.

Assume that training data is available from which they can learn to predict a
target feature based on other features (e.g., monthly rent based on area).
▶ Classification.
▶ Regression.

▶ Unsupervised Learning
Take a given dataset and aim at gaining insights by identifying patterns, e.g., by
grouping similar data points.

▶ Reinforcement Learning.

32 / 118

Structured Data

▶ We often deal with structured data.
▶ Example: Data about monthly rent of real estate in a city.

33 / 118

Unstructured and Semi-structured Data

▶ Many interesting datasets are unstructured, typically natural language texts
written by humans, or semi-structured, interleaving structured and unstructured
data.

▶ Example: Newspaper articles with assigned categories.

34 / 118

Feature Types (I)

When working with structured data, we distinguish different types of features,
depending on which operations can be applied.

Dataset consists of five features.

35 / 118

Feature Types (II)

▶ Nominal features can be compared (==, !=) and counted (e.g., gender of a
person, color of a car).

▶ Ordinal features can, in addition, be compared (<, >) (e.g., customer
satisfaction level, energy class of car).

▶ Numerical features allow in addition for arithmetic operations (+, -, *, /), so
that we can compute the difference between values, compute their mean, compute
their variance, etc. (e.g., the fuel consumption of a car, income of a household).

36 / 118

Feature Types (III)

Area: Num; EstateType: Nom; DistanceToCenter: Num; EnergyClass: Ord; MonthlyRent:Num.

37 / 118

ML Applications

▶ Association.
▶ Supervised Learning.

Assume that training data is available from which they can learn to predict a
target feature based on other features (e.g., monthly rent based on area).
▶ Classification.
▶ Regression.

▶ Unsupervised Learning
Take a given dataset and aim at gaining insights by identifying patterns, e.g., by
grouping similar data points.

▶ Reinforcement Learning.

38 / 118

Supervised Regression

▶ Regression aims at predicting a
numerical target feature based on one
or multiple other (numerical) features.

▶ Example: Price of a used car.

▶ x : car attributes
▶ y : price
▶ y = h(x|θ)
▶ h(): model
▶ θ : parameters Fig. from Alpaydin (2014)

39 / 118

Supervised Classification

Example 1: Spam Classification
▶ Decide which emails are Spam and which

are not.
▶ Goal: Use emails seen so far to produce a

good prediction rule for future data.
Example 2: Credit Scoring
▶ Differentiating between low-risk and

high-risk customers from their income and
savings.

▶ Discriminant: IF income > θ2 AND
savings > θ2 THEN low-risk ELSE
high-risk Fig. from Alpaydin (2014)

40 / 118

Classification: More applications

▶ Face recognition: Pose, lighting, occlusion
(glasses, beard), make-up, hairstyle.

▶ Character recognition: Different handwriting
styles.

▶ Speech recognition: Temporal dependency.
▶ Medical diagnosis: From symptoms to

illnesses.
▶ Biometrics: Recognition/authentication using

physical and/or behavioral characteristics such
as face, iris, signature, etc.

▶ Outlier/novelty detection. Random sampling of MNIST

41 / 118

Handwritten Digit Classification (LeNet)

Movie from the early 90’s. We have come a long way since then...
Handwritten Digit Classification – by Yann Lecun

42 / 118

https://www.youtube.com/watch?v=yxuRnBEczUU

Unsupervised Learning

Learning “what normally happens”.
▶ No output.
▶ Clustering: Grouping similar instances.
▶ Example applications:

▶ Customer segmentation.
▶ Image compression: Color

quantization.
▶ Bioinformatics: Learning motifs.

43 / 118

Unsupervised Learning

Learning “what normally happens”.
▶ No output.
▶ Clustering: Grouping similar instances.
▶ Example applications:

▶ Customer segmentation.
▶ Image compression: Color

quantization.
▶ Bioinformatics: Learning motifs.

44 / 118

Reinforcement Learning

▶ Learning a policy: A sequence of outputs.
▶ No supervised output but delayed reward.
▶ Credit assignment problem.
▶ Game playing.
▶ Robot in a maze.
▶ Multiple agents, partial observability, …

→ DeepMind′sQlearning.

45 / 118

https://www.youtube.com/watch?v=V1eYniJ0Rnk

Self-Driving Cars

▶ Carnegie Mellon University — 1990’s:
Self Driving Cars S1E2: ALVINN.

▶ Google — 2017: Waymo.
▶ Classification.
▶ Regression.
▶ Reinforcement learning.
▶ Prediction.

46 / 118

https://www.youtube.com/watch?v=H0igiP6Hg1k
https://www.youtube.com/watch?v=B8R148hFxPw

Two-Legged Robots

→ BostonDynamics′AtlasRobotCanDoParkour.
→ Handyman.

47 / 118

https://www.youtube.com/watch?v=hSjKoEva5bg
https://www.youtube.com/watch?v=-e1_QhJ1EhQ

Building an ML Algorithm

▶ Optimize a performance criterion using an example data or past
experience.

▶ Role of Statistics: Inference from a sample.
▶ Role of computer science: Efficient algorithms to

▶ Solve the optimization problem.
▶ Representing and evaluating the model for inference.

48 / 118

Building an ML Algorithm (II)

Living area (feet 2) Price (1000$s)
2104 400
1600 330
2400 369
1416 232
3000 540
... ...

Given data like this, how can we learn to predict the prices of other houses as a
function of the size of their living areas?

49 / 118

Building an ML Algorithm (III)

▶ x(i): “input” variables (living area in this
example), also called input features.

▶ y(i): “output” / target variable that we
are trying to predict (price).

▶ Training example: a pair (x(i), y(i)).
▶ Training set: a list of m training examples

(x(i), y(i)); i = 1, ...,m.
To perform supervised learning, we must decide
how we’re going to represent
functions/hypotheses h in a computer.

50 / 118

Building an ML Algorithm (IV)

▶ Model/Hypothesis:

hθ(x) = θ0 + θ1x1 + θ2x2

θi’s: parameters
▶ Cost Function:

J(θ) = 1
2

m∑
i=1

(hθ(x(i))− y(i))2

=⇒ Minimize J(θ) in order to obtain
the coefficients θ.

51 / 118

Building an ML Algorithm (V)

In general, Machine Learning in 3 Steps:
▶ Choose a model h(x | θ).
▶ Define a cost function J(θ | x).
▶ Optimization procedure to find θ∗ that minimizes J(θ).

Computationally, we need data, linear algebra, statistics
tools, and optimization routines.

52 / 118

Computers

In their capacity as a tool, comput-
ers will be but a ripple on the surface
of our culture. In their capacity as
intellectual challenge, they are with-
out precedent in the cultural history
of mankind.

— Edsger Dijkstra, 1972 Turing Award Lecture

53 / 118

Our Civilization Runs on Software

▶ How many computers do you depend on for what you do during a day?

▶ You eat: getting the food to you is a major effort requiring minor miracles of
planning, transport, and storage.

▶ The management of the distribution networks is of course computerized, as
are the communication systems that stitch them all together.

▶ If you have to commute, the traffic flows are monitored by computers in a
(usually vain) attempt to avoid traffic jams.

▶ You prefer to take the train? That train will also be computerized; → some
even operate without a driver, and the train’s subsystems, such as
announcements, braking, and ticketing, involve lots of computers.

▶ Today’s entertainment industry (music, movies, television, stage shows) is
among the largest users of computers. Even non-cartoon movies use
(computer) animation heavily.

▶ Music and photography are also digital (i.e., using computers) for both
recording and delivery.

▶ Should you become ill, the tests your doctor’s diagnosis will involve
computers.

54 / 118

Our Civilization Runs on Software

▶ How many computers do you depend on for what you do during a day?
▶ You eat: getting the food to you is a major effort requiring minor miracles of

planning, transport, and storage.
▶ The management of the distribution networks is of course computerized, as

are the communication systems that stitch them all together.

▶ If you have to commute, the traffic flows are monitored by computers in a
(usually vain) attempt to avoid traffic jams.

▶ You prefer to take the train? That train will also be computerized; → some
even operate without a driver, and the train’s subsystems, such as
announcements, braking, and ticketing, involve lots of computers.

▶ Today’s entertainment industry (music, movies, television, stage shows) is
among the largest users of computers. Even non-cartoon movies use
(computer) animation heavily.

▶ Music and photography are also digital (i.e., using computers) for both
recording and delivery.

▶ Should you become ill, the tests your doctor’s diagnosis will involve
computers.

54 / 118

Our Civilization Runs on Software

▶ How many computers do you depend on for what you do during a day?
▶ You eat: getting the food to you is a major effort requiring minor miracles of

planning, transport, and storage.
▶ The management of the distribution networks is of course computerized, as

are the communication systems that stitch them all together.
▶ If you have to commute, the traffic flows are monitored by computers in a

(usually vain) attempt to avoid traffic jams.

▶ You prefer to take the train? That train will also be computerized; → some
even operate without a driver, and the train’s subsystems, such as
announcements, braking, and ticketing, involve lots of computers.

▶ Today’s entertainment industry (music, movies, television, stage shows) is
among the largest users of computers. Even non-cartoon movies use
(computer) animation heavily.

▶ Music and photography are also digital (i.e., using computers) for both
recording and delivery.

▶ Should you become ill, the tests your doctor’s diagnosis will involve
computers.

54 / 118

Our Civilization Runs on Software

▶ How many computers do you depend on for what you do during a day?
▶ You eat: getting the food to you is a major effort requiring minor miracles of

planning, transport, and storage.
▶ The management of the distribution networks is of course computerized, as

are the communication systems that stitch them all together.
▶ If you have to commute, the traffic flows are monitored by computers in a

(usually vain) attempt to avoid traffic jams.
▶ You prefer to take the train? That train will also be computerized; → some

even operate without a driver, and the train’s subsystems, such as
announcements, braking, and ticketing, involve lots of computers.

▶ Today’s entertainment industry (music, movies, television, stage shows) is
among the largest users of computers. Even non-cartoon movies use
(computer) animation heavily.

▶ Music and photography are also digital (i.e., using computers) for both
recording and delivery.

▶ Should you become ill, the tests your doctor’s diagnosis will involve
computers.

54 / 118

Our Civilization Runs on Software

▶ How many computers do you depend on for what you do during a day?
▶ You eat: getting the food to you is a major effort requiring minor miracles of

planning, transport, and storage.
▶ The management of the distribution networks is of course computerized, as

are the communication systems that stitch them all together.
▶ If you have to commute, the traffic flows are monitored by computers in a

(usually vain) attempt to avoid traffic jams.
▶ You prefer to take the train? That train will also be computerized; → some

even operate without a driver, and the train’s subsystems, such as
announcements, braking, and ticketing, involve lots of computers.

▶ Today’s entertainment industry (music, movies, television, stage shows) is
among the largest users of computers. Even non-cartoon movies use
(computer) animation heavily.

▶ Music and photography are also digital (i.e., using computers) for both
recording and delivery.

▶ Should you become ill, the tests your doctor’s diagnosis will involve
computers.

54 / 118

Our Civilization Runs on Software

▶ How many computers do you depend on for what you do during a day?
▶ You eat: getting the food to you is a major effort requiring minor miracles of

planning, transport, and storage.
▶ The management of the distribution networks is of course computerized, as

are the communication systems that stitch them all together.
▶ If you have to commute, the traffic flows are monitored by computers in a

(usually vain) attempt to avoid traffic jams.
▶ You prefer to take the train? That train will also be computerized; → some

even operate without a driver, and the train’s subsystems, such as
announcements, braking, and ticketing, involve lots of computers.

▶ Today’s entertainment industry (music, movies, television, stage shows) is
among the largest users of computers. Even non-cartoon movies use
(computer) animation heavily.

▶ Music and photography are also digital (i.e., using computers) for both
recording and delivery.

▶ Should you become ill, the tests your doctor’s diagnosis will involve
computers.

54 / 118

Our Civilization Runs on Software

▶ How many computers do you depend on for what you do during a day?
▶ You eat: getting the food to you is a major effort requiring minor miracles of

planning, transport, and storage.
▶ The management of the distribution networks is of course computerized, as

are the communication systems that stitch them all together.
▶ If you have to commute, the traffic flows are monitored by computers in a

(usually vain) attempt to avoid traffic jams.
▶ You prefer to take the train? That train will also be computerized; → some

even operate without a driver, and the train’s subsystems, such as
announcements, braking, and ticketing, involve lots of computers.

▶ Today’s entertainment industry (music, movies, television, stage shows) is
among the largest users of computers. Even non-cartoon movies use
(computer) animation heavily.

▶ Music and photography are also digital (i.e., using computers) for both
recording and delivery.

▶ Should you become ill, the tests your doctor’s diagnosis will involve
computers.

54 / 118

Software in Our Daily Life

▶ Software is a collection of programs running on some
computer.

▶ Sometimes, we can see the computer.
▶ Often, we can see only something that contains the

computer, such as a telephone, a camera, a bread
maker, a car, or a wind turbine.

▶ We can see what that software does.
▶ We can be annoyed or hurt if it doesn’t do what it is

supposed to do.
▶ Research, i.e., science itself relies heavily on computers.
▶ Improving software and finding new uses for software are

two of the ways an individual can help improve the lives
of many.

→ Programming plays an essential role in all of that.

55 / 118

Software in Our Daily Life

▶ Software is a collection of programs running on some
computer.

▶ Sometimes, we can see the computer.
▶ Often, we can see only something that contains the

computer, such as a telephone, a camera, a bread
maker, a car, or a wind turbine.

▶ We can see what that software does.
▶ We can be annoyed or hurt if it doesn’t do what it is

supposed to do.
▶ Research, i.e., science itself relies heavily on computers.

▶ Improving software and finding new uses for software are
two of the ways an individual can help improve the lives
of many.

→ Programming plays an essential role in all of that.

55 / 118

Software in Our Daily Life

▶ Software is a collection of programs running on some
computer.

▶ Sometimes, we can see the computer.
▶ Often, we can see only something that contains the

computer, such as a telephone, a camera, a bread
maker, a car, or a wind turbine.

▶ We can see what that software does.
▶ We can be annoyed or hurt if it doesn’t do what it is

supposed to do.
▶ Research, i.e., science itself relies heavily on computers.
▶ Improving software and finding new uses for software are

two of the ways an individual can help improve the lives
of many.

→ Programming plays an essential role in all of that.

55 / 118

A few quiz questions to get an overview of your knowledge

1. How are your programming skills?
1.1 I have never programmed at all
1.2 I have never programmed in Python, C nor C++
1.3 I know some basic Python
1.4 I know some basic C
1.5 I know some basic C++
1.6 I know C++ well
1.7 I am a C++ guru

56 / 118

A few quiz questions to get an overview of your knowledge

1. What operating system are you using (for programming)?
1.1 I have no idea
1.2 Windows
1.3 Linux
1.4 macOS (my computer looks pretty and has some bitten apple on it)
1.5 Other

56 / 118

A few quiz questions to get an overview of your knowledge

1. What compiler do you use?
1.1 None, I don’t know what it is
1.2 Whatever the compile button in my IDE (integrated dev. env.) uses
1.3 GNU Compiler Collection
1.4 Clang
1.5 MinGW
1.6 My own

56 / 118

A few quiz questions to get an overview of your knowledge

1. Do you know build systems?
1.1 I have never heard about it
1.2 I have used Automake
1.3 I have used Lego
1.4 I have used CMake
1.5 I have used Scons
1.6 I know it well
1.7 I am a guru

56 / 118

A few quiz questions to get an overview of your knowledge

1. Do you know version control?
1.1 I have never heard about it
1.2 I have used CVS
1.3 I have used SVN
1.4 I have used Git
1.5 I have used Copy&Paste
1.6 I know it well
1.7 I am a guru

56 / 118

A few quiz questions to get an overview of your knowledge

1. How is the integer value +1 represented in binary in a 16-bit integer
1.1 0000000000000000
1.2 0000000000000001
1.3 1000000000000000
1.4 1111111111111111
1.5 1000000000000001
1.6 1111111111111110

56 / 118

A few quiz questions to get an overview of your knowledge

1. What is the size of the string “Hello” in Python, i.e. the result of
len(``Hello'')
1.1 1
1.2 5
1.3 6
1.4 7
1.5 8

56 / 118

Computer Science

▶ Computer science is the discipline that seeks to build a scientific foundation for
such topics as
▶ computer design
▶ computer programming
▶ information processing
▶ algorithmic solutions of problems
▶ the algorithmic process itself

▶ It provides the underpinnings for
▶ today’s computer applications as well as
▶ the foundations for tomorrow’s computing infrastructure.

57 / 118

Computational Science

▶ Computational science: a rapidly growing multidisciplinary field that uses
advanced computing capabilities to understand and solve complex problems.

▶ It is an area of science which spans many disciplines (comp. finance, comp. econ,
comp. physics, comp. biology,...).

▶ → At its core it involves the development of models and simulations to
understand complex systems.

Computational science aims to make the complexity of those systems tractable.

58 / 118

Example: A star explosion

https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/movies/s20_3Ds_HD.mp4

59 / 118

https://wwwmpa.mpa-garching.mpg.de/ccsnarchive/movies/s20_3Ds_HD.mp4

The Role of Algorithms

▶ We begin with the most fundamental concept of computer science - that of an
algorithm.

Informally, an algorithm is a set of steps that defines how a task is performed.

▶ For example, there are
▶ algorithms for cooking (called recipes),
▶ for finding your way through a strange city

(more commonly called directions).

60 / 118

Example of an Algorithm
▶ The study of algorithms began as a subject in mathematics.
▶ The search for algorithms was a significant activity of mathematicianslong before the

development of today’s computers. The goal was to find a single set of instructions that
described how all problems of a particular type could be solved.

▶ One of the best known examples of this early research is the long division algorithm for
finding the quotient of two multiple-digit numbers.

The Euclidean algorithm for finding the greatest common divisor of two positive integers.

61 / 118

Euclidean Algorithm

1. Compute greatest common divisor of (48, 18).
2. Divide 48 by 18 to get a quotient of 2 remainder of 12.
3. Divide 18 by 12 to get a quotient of 1 and a remainder of 6.
4. Divide 12 by 6 to get a remainder of 0.
→ This means that 6 is the “gcd”.
We ignored the quotient in each step except to notice when the
remainder reached 0, indicating that we had arrived at the answer.

62 / 118

Algorithm → Program

▶ Before a machine such as a computer can perform a task, an algorithm for
performing that task must be discovered and represented in a form that is
compatible with the machine.

→ A representation of an algorithm is called a program.

▶ For the convenience of humans, computer programs are usually printed on paper
or displayed on computer screens.

▶ For the convenience of machines, programs are encoded in a manner compatible
with the technology of the machine.

Programming: The process of developing a program, encoding it in machine-
compatible form, and inserting it into a machine is called programming.

▶ Programs, and the algorithms they represent, are collectively referred to as
software, in contrast to the machinery itself, which is known as hardware.

63 / 118

Programmer and User

▶ Programmer — the person who solves the problem and writes the instructions
for the computer.

▶ User — any person who uses the program written by the programmer.

64 / 118

Program Planning

▶ Always have a plan before trying to
write a program.

▶ The more complicated the problem,
the more complex the plan must be.

▶ Planning before coding saves time.

65 / 118

Program Development Cycle

1. Analyze: Define the problem.
2. Design: Plan the solution to the problem.
3. Choose the interface: Select the objects (text boxes, buttons, etc.).
4. Code: Translate the algorithm into a programming language.
5. Test and debug: Locate and remove any errors in the program.
6. Complete the documentation: Organize all the materials that describe the

program.

66 / 118

Software Development Process

67 / 118

System Design & Implementation

68 / 118

Testing & Deployment

69 / 118

Maintainence

70 / 118

Programming Tools

Three tools are used to convert algorithms into computer programs:

▶ Flowchart: Graphically depicts the logical steps to carry out a
task and shows how the steps relate to each other.

▶ Pseudo-code: Uses English-like phrases, e.g., with some
Python terms to outline the program.

▶ Hierarchy chart: Shows how the different parts of a program
relate to each other.

71 / 118

Flowchart Example

Example: Determine the proper number of stamps for a letter.

Start

Read sheets

Set stamps = sheets / 5

Round stamps up to next whole number

Display stamps

End

input

processing

processing

output

72 / 118

Pseudocode Example

Pseudocode uses English-like phrases with some Python/C++ terms to outline the
task.

73 / 118

A Computer

A computer is a machine that can:
▶ Accept input. Input could be entered by a human typing at a

keyboard, received over a network, or provided automatically by
sensors attached to the computer.

▶ Execute a (mechanical) procedure, that is, a procedure where
each step can be executed without any thought.

▶ Produce output. Output could be data displayed to a human,
but it could also be anything that effects the world outside the
computer such as electrical signals that control how a device
operates.

74 / 118

Basics: von Neumann Architecture
https://computing.llnl.gov/tutorials/parallel_comp

▶ Virtually all computers have followed this basic design. Comprised of four
main components: Memory, Control Unit, Arithmetic Logic Unit,
Input/Output.

▶ Read/write, random access memory is used to store both program
instructions and data:
▶ Program instructions are coded data which tell the computer to

do something.
▶ Data is simply information to be used by the program.

▶ Control unit
▶ fetches instructions/data from memory, decodes the instructions

and then sequentially coordinates operations to accomplish the
programmed task.

▶ Arithmetic unit
▶ performs basic arithmetic operations.

▶ Input/Output
▶ interface to the human operator.

75 / 118

https://computing.llnl.gov/tutorials/parallel_comp

From a programming language to hardware
http://cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/577-hpcsei

▶ A computer is a “stupid” device, only understands “on” and “off”.
▶ The symbols for these states are 0 and 1 (binary).
▶ First programmers communicated in 0 and 1.
▶ Later programs where developed to translate from symbolic notation to binary.

The first was called ‘‘assembly”.

> add A, B (programmer writes in assembly language)
>1000110010100000 (assembly translates to machine language)

Advanced programming languages are better than “assembly”:
▶ programmer thinks in a more natural language.
▶ productivity of software development.
▶ portability.

76 / 118

http://cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/577-hpcsei

A Brief History of Computing

▶ Today’s computers have an extensive genealogy.
▶ One of the earlier computing devices was the

abacus.
▶ A few inventors began to experiment with the

technology of gears.
▶ Among these were Blaise Pascal (1623-1662),

Gottfried Wilhelm Leibniz (1646-1716), and Charles
Babbage (1792-1871).

▶ These machines represented data through gear
positioning, with data being input mechanically by
establishing initial gear positions.

▶ Output from Pascal’s and Leibniz’s machines was
achieved by observing the final gear positions.

▶ Babbage envisioned machines that would print
results of computations on paper so that the
possibility of transcription errors would be
eliminated. 77 / 118

A Brief History of Computing (II)

▶ Examples of this progress include the
electromechanical machine Mark I, completed in
1944 at Harvard University by Howard Aiken and a
group of IBM engineers.

▶ These machines made heavy use of electronically
controlled mechanical relays.

▶ A major step toward popularizing computing was
the development of desktop computers.

▶ The origins of these machines can be traced to the
computer hobbyists who built homemade computers
from combinations of chips.

▶ It was within this “underground” of hobby activity
that Steve Jobs and Stephen Wozniak built a
commercially viable home computer and, in 1976,
established Apple Computer, Inc. (now Apple Inc.)
to manufacture and market their products.

78 / 118

Moore’s Law

▶ The number of transistors on a chip doubles
every 18 months (April 19, 1965).
▶ More transistors means smaller transistors
▶ Smaller transistors → shorter distances →

faster signals.
▶ Smaller transistors → fewer charges → faster

switching
▶ Thus, the CPU speed increases exponentially.

▶ Has worked for the past 50 years!
▶ How long will it continue?

▶ Prototype chips at 10 GHz.
▶ Insulating layers only 4 atoms thick!
▶ , and we still reduce the size??
▶ Moore’s law will probably stop working in

this decade.
▶ Software optimization will become more

important.

79 / 118

Moore’s Law for Supercomputers

▶ HPC is the “third” pillar of science — nowadays is the dawn of an era (in physics,
chemistry, biology, ..., next to experiment and theory).

▶ “In Silico” experiments.
▶ Modern Supercomputers (e.g. world’s number 7 Summit at Oak Ridge National Lab)

200× 1015 Flops/Sec. → 1 day vs. Laptop: ∼ 30, 000 years.

80 / 118

Moore’s Law for Supercomputers

▶ → Move away from stylized models towards “realistically-sized” problems.
▶ Creating “good” HPC software can be very difficult...

81 / 118

Petascale Computers — How can we tap them?
*Slide adjusted from O. Schenk

Modern Supercomputers (Summit) 200× 1015 Flops/Sec. → 1 day
vs. Laptop: ∼ 30, 000y.

82 / 118

https://top500.org/lists/top500/2025/06/ (June 2025)

83 / 118

https://top500.org/lists/top500/2025/06/

Data Representation in a Computer

▶ Computer memory is composed of billions of individual switches, each of which
can be ON or OFF, but not at a state in between.

→ Each switch represents one binary digit (also called a bit)

▶ The ON state is interpreted as a binary 1, and the OFF state is interpreted as a
binary 0 .

▶ Taken by itself, a single switch can only represent the numbers 0 and 1.
▶ → Since we obviously need to work with numbers other than 0 and 1 , a number

of bits are grouped together to represent each number used in a computer.

When several bits are grouped together, they can be used to represent numbers in
the binary (base 2) number system.

84 / 118

Data Representation in a Computer

▶ Computer memory is composed of billions of individual switches, each of which
can be ON or OFF, but not at a state in between.

→ Each switch represents one binary digit (also called a bit)

▶ The ON state is interpreted as a binary 1, and the OFF state is interpreted as a
binary 0 .

▶ Taken by itself, a single switch can only represent the numbers 0 and 1.
▶ → Since we obviously need to work with numbers other than 0 and 1 , a number

of bits are grouped together to represent each number used in a computer.

When several bits are grouped together, they can be used to represent numbers in
the binary (base 2) number system.

84 / 118

Data Representation in a Computer

▶ Computer memory is composed of billions of individual switches, each of which
can be ON or OFF, but not at a state in between.

→ Each switch represents one binary digit (also called a bit)

▶ The ON state is interpreted as a binary 1, and the OFF state is interpreted as a
binary 0 .

▶ Taken by itself, a single switch can only represent the numbers 0 and 1.
▶ → Since we obviously need to work with numbers other than 0 and 1 , a number

of bits are grouped together to represent each number used in a computer.

When several bits are grouped together, they can be used to represent numbers in
the binary (base 2) number system.

84 / 118

Bit — Byte — Word

▶ The smallest common grouping of bits is called a byte.
▶ A byte is a group of 8 bits that are used together to represent a binary number.

The byte is the fundamental unit used to measure the capacity of a computer’s
memory.

▶ For example, the personal computer on which I am writing these words has a main
memory of 24 gigabytes (24, 000, 000, 000 bytes) and a secondary memory (disk
drive) with a storage of 2 tera-bytes (2, 000, 000, 000, 000 bytes).

▶ The next larger grouping of bits in a computer is called a word.
▶ A word consists of 2, 4, or more consecutive bytes that are used to represent a

single number in memory.
▶ The size of a word varies from computer to computer → so words are not a

particularly good way to judge the size of computer memories.
▶ Modern CPUs tend to use words with lengths of either 32 or 64 bits.

85 / 118

Bit — Byte — Word

▶ The smallest common grouping of bits is called a byte.
▶ A byte is a group of 8 bits that are used together to represent a binary number.

The byte is the fundamental unit used to measure the capacity of a computer’s
memory.

▶ For example, the personal computer on which I am writing these words has a main
memory of 24 gigabytes (24, 000, 000, 000 bytes) and a secondary memory (disk
drive) with a storage of 2 tera-bytes (2, 000, 000, 000, 000 bytes).

▶ The next larger grouping of bits in a computer is called a word.
▶ A word consists of 2, 4, or more consecutive bytes that are used to represent a

single number in memory.

▶ The size of a word varies from computer to computer → so words are not a
particularly good way to judge the size of computer memories.

▶ Modern CPUs tend to use words with lengths of either 32 or 64 bits.

85 / 118

Bit — Byte — Word

▶ The smallest common grouping of bits is called a byte.
▶ A byte is a group of 8 bits that are used together to represent a binary number.

The byte is the fundamental unit used to measure the capacity of a computer’s
memory.

▶ For example, the personal computer on which I am writing these words has a main
memory of 24 gigabytes (24, 000, 000, 000 bytes) and a secondary memory (disk
drive) with a storage of 2 tera-bytes (2, 000, 000, 000, 000 bytes).

▶ The next larger grouping of bits in a computer is called a word.
▶ A word consists of 2, 4, or more consecutive bytes that are used to represent a

single number in memory.
▶ The size of a word varies from computer to computer → so words are not a

particularly good way to judge the size of computer memories.
▶ Modern CPUs tend to use words with lengths of either 32 or 64 bits.

85 / 118

The Decimal Number System

▶ In the familiar base 10 number system, the smallest (rightmost) digit of a number
is the ones place

(
100

)
.

▶ The next digit is in the tens place
(
101

)
, and the next one is in the hundreds

place
(
102

)
, etc.

▶ Thus, the number 12210 is really
(
1× 102

)
+
(
2× 101

)
+

(
2× 100

)
.

▶ Each digit is worth a power of 10 more than the digit to the right of it in the base
10 system.

86 / 118

The Binary Number System

▶ Similarly, in the binary number system, the smallest (rightmost) digit is the ones
place

(
20
)
.

▶ The next digit is in the twos place
(
21
)
, and the next one is in the fours place(

22
)
, etc. Each digit is worth a power of 2 more than the digit to the right of it in

the base 2 system. For example, the binary number 1012 is really
(
1× 22

)
+
(
0× 21

)
+

(
1× 20

)
= 5.

87 / 118

Representation of numbers

▶ Note that three binary digits can be used to represent eight possible values:
0 (= 0002) to 7 (= 1112).

▶ In general, if n bits are grouped together to form a binary number, then they can
represent 2n possible values.

▶ Thus, a group of 8 bits (1 byte) can represent 256 possible values, and a group of
16 bits (2 bytes) can be used to represent 65,536 possible values.

▶ A group of 32 bits (4 bytes) can be used to represent 4,294,967,296 possible
values.

▶ In a typical implementation, half of all possible values are reserved for representing
negative numbers, and half of the values are reserved for representing zero plus the
positive numbers.

▶ Thus, a group of 8 bits (1 byte) is usually used to represent numbers between -128
and +127 , including 0 , and a group of 16 bits (2 bytes) is usually used to represent
numbers between −32, 768 and +32, 767, including 0 .

88 / 118

Representation of numbers

▶ Note that three binary digits can be used to represent eight possible values:
0 (= 0002) to 7 (= 1112).

▶ In general, if n bits are grouped together to form a binary number, then they can
represent 2n possible values.

▶ Thus, a group of 8 bits (1 byte) can represent 256 possible values, and a group of
16 bits (2 bytes) can be used to represent 65,536 possible values.

▶ A group of 32 bits (4 bytes) can be used to represent 4,294,967,296 possible
values.

▶ In a typical implementation, half of all possible values are reserved for representing
negative numbers, and half of the values are reserved for representing zero plus the
positive numbers.

▶ Thus, a group of 8 bits (1 byte) is usually used to represent numbers between -128
and +127 , including 0 , and a group of 16 bits (2 bytes) is usually used to represent
numbers between −32, 768 and +32, 767, including 0 .

88 / 118

Representation of numbers

▶ Note that three binary digits can be used to represent eight possible values:
0 (= 0002) to 7 (= 1112).

▶ In general, if n bits are grouped together to form a binary number, then they can
represent 2n possible values.

▶ Thus, a group of 8 bits (1 byte) can represent 256 possible values, and a group of
16 bits (2 bytes) can be used to represent 65,536 possible values.

▶ A group of 32 bits (4 bytes) can be used to represent 4,294,967,296 possible
values.

▶ In a typical implementation, half of all possible values are reserved for representing
negative numbers, and half of the values are reserved for representing zero plus the
positive numbers.

▶ Thus, a group of 8 bits (1 byte) is usually used to represent numbers between -128
and +127 , including 0 , and a group of 16 bits (2 bytes) is usually used to represent
numbers between −32, 768 and +32, 767, including 0 .

88 / 118

Representation of numbers

▶ Note that three binary digits can be used to represent eight possible values:
0 (= 0002) to 7 (= 1112).

▶ In general, if n bits are grouped together to form a binary number, then they can
represent 2n possible values.

▶ Thus, a group of 8 bits (1 byte) can represent 256 possible values, and a group of
16 bits (2 bytes) can be used to represent 65,536 possible values.

▶ A group of 32 bits (4 bytes) can be used to represent 4,294,967,296 possible
values.
▶ In a typical implementation, half of all possible values are reserved for representing

negative numbers, and half of the values are reserved for representing zero plus the
positive numbers.

▶ Thus, a group of 8 bits (1 byte) is usually used to represent numbers between -128
and +127 , including 0 , and a group of 16 bits (2 bytes) is usually used to represent
numbers between −32, 768 and +32, 767, including 0 .

88 / 118

Types of Data Stored in Memory

Three common types of data are stored in a computer’s memory:
▶ character data
▶ integer data
▶ real data (numbers with a decimal point).

Each type of data has different characteristics, and takes up a different amount of
memory in the computer.

89 / 118

Character Data

▶ The character data type consists of characters and symbols.
▶ A typical system for representing character data in a non-Oriental language must

include the following symbols:
1. The 26 uppercase letters A through Z
2. The 26 lowercase letters a through z
3. The 10 digits 0 through 9
4. Miscellaneous common symbols, such as ”, 0, {}, [], !,∼,@,#, $, %,∧,&, and ∗.
5. Any special letters or symbols required by the language, such as à, ç, ë, and .

▶ Since the total number of characters and symbols required to write western
languages is less than 256, it is customary to use 1 byte of memory to store each
character.

Therefore, 10,000 characters would occupy 10,000 bytes of the computer’s memory.

90 / 118

Integer Data
▶ The integer data type consists of the positive integers, the negative integers, and

zero.
▶ The amount of memory devoted to storing an integer will vary from computer to

computer but will usually be 1, 2, 4, or 8 bytes.

▶ Four-byte integers (4 bytes) are the most common type in modern computers.
▶ Since a finite number of bits are used to store each value, only integers that fall

within a certain range can be represented on a computer.
▶ Usually, the smallest number that can be stored in an n-bit integer is

Smallest integer value = −2n−1

▶ and the largest number that can be stored in an n-bit integer is

Largest integer value = 2n−1 − 1

▶ For a 4-byte integer, the smallest and largest possible values are −2, 147, 483, 648
and 2,147,483,647, respectively.

91 / 118

Integer Data
▶ The integer data type consists of the positive integers, the negative integers, and

zero.
▶ The amount of memory devoted to storing an integer will vary from computer to

computer but will usually be 1, 2, 4, or 8 bytes.
▶ Four-byte integers (4 bytes) are the most common type in modern computers.

▶ Since a finite number of bits are used to store each value, only integers that fall
within a certain range can be represented on a computer.

▶ Usually, the smallest number that can be stored in an n-bit integer is

Smallest integer value = −2n−1

▶ and the largest number that can be stored in an n-bit integer is

Largest integer value = 2n−1 − 1

▶ For a 4-byte integer, the smallest and largest possible values are −2, 147, 483, 648
and 2,147,483,647, respectively.

91 / 118

Integer Data
▶ The integer data type consists of the positive integers, the negative integers, and

zero.
▶ The amount of memory devoted to storing an integer will vary from computer to

computer but will usually be 1, 2, 4, or 8 bytes.
▶ Four-byte integers (4 bytes) are the most common type in modern computers.
▶ Since a finite number of bits are used to store each value, only integers that fall

within a certain range can be represented on a computer.
▶ Usually, the smallest number that can be stored in an n-bit integer is

Smallest integer value = −2n−1

▶ and the largest number that can be stored in an n-bit integer is

Largest integer value = 2n−1 − 1

▶ For a 4-byte integer, the smallest and largest possible values are −2, 147, 483, 648
and 2,147,483,647, respectively.

91 / 118

The Real Data Type

The integer data type has two fundamental limitations:
1. It is not possible to represent numbers with fractional parts (0.25, 1.5, 3.14159 ,

etc.) as integer data.
2. It is not possible to represent very large positive integers or very small negative

integers, because there are not enough bits available to represent the value. The
largest and smallest possible integers that can be stored in a given memory
location will be given by equations from the previous slide.

→ To get around these limitations, computers include a real or floating-point
data type.

92 / 118

The Real Data Type (II)

▶ The real numbers in a computer are similar to the scientific notation above,
except that a computer works in the base 2 system instead of the base 10 system.

▶ Real numbers can e.g. occupy 32 bits (4 bytes) of computer memory, divided into
two components:
▶ a 24-bit mantissa and an 8-bit exponent.
▶ The mantissa contains a number between -1.0 and 1.0.
▶ The exponent contains the power of 2 required to scale the number to its actual

value.

93 / 118

The Real Data Type (II)

▶ The real numbers in a computer are similar to the scientific notation above,
except that a computer works in the base 2 system instead of the base 10 system.

▶ Real numbers can e.g. occupy 32 bits (4 bytes) of computer memory, divided into
two components:
▶ a 24-bit mantissa and an 8-bit exponent.
▶ The mantissa contains a number between -1.0 and 1.0.
▶ The exponent contains the power of 2 required to scale the number to its actual

value.

93 / 118

IEEE Floating Point Representation

Type Exponent Mantissa Smallest Largest Base 10 accuracy
float 8 23 1.2E-38 3.4E+38 6-9
double 11 52 2.2E-308 1.8E+308 15-17

94 / 118

Precision and Range

▶ Real numbers are characterized by two quantities: precision and range.
▶ Precision: is the number of significant digits that can be preserved in a number
▶ Range: is the difference between the largest and smallest numbers that can be

represented.

▶ The precision of a real number depends on the number of bits in its mantissa
▶ The range of the number depends on the number of bits in its exponent.
▶ → A 24-bit mantissa can represent approximately ±223 numbers, or about seven

significant decimal digits, so the precision of real numbers is about seven
significant digits.

▶ An 8-bit exponent can represent multipliers between 2−128 and 2127, so the range
of real numbers is from about 10−38 to 1038.

→ Note that the real data type can represent numbers much larger or much smaller
than integers can, but only with seven significant digits of precision.

95 / 118

Precision and Range

▶ Real numbers are characterized by two quantities: precision and range.
▶ Precision: is the number of significant digits that can be preserved in a number
▶ Range: is the difference between the largest and smallest numbers that can be

represented.
▶ The precision of a real number depends on the number of bits in its mantissa
▶ The range of the number depends on the number of bits in its exponent.
▶ → A 24-bit mantissa can represent approximately ±223 numbers, or about seven

significant decimal digits, so the precision of real numbers is about seven
significant digits.

▶ An 8-bit exponent can represent multipliers between 2−128 and 2127, so the range
of real numbers is from about 10−38 to 1038.

→ Note that the real data type can represent numbers much larger or much smaller
than integers can, but only with seven significant digits of precision.

95 / 118

Precision and Range

▶ Real numbers are characterized by two quantities: precision and range.
▶ Precision: is the number of significant digits that can be preserved in a number
▶ Range: is the difference between the largest and smallest numbers that can be

represented.
▶ The precision of a real number depends on the number of bits in its mantissa
▶ The range of the number depends on the number of bits in its exponent.
▶ → A 24-bit mantissa can represent approximately ±223 numbers, or about seven

significant decimal digits, so the precision of real numbers is about seven
significant digits.

▶ An 8-bit exponent can represent multipliers between 2−128 and 2127, so the range
of real numbers is from about 10−38 to 1038.

→ Note that the real data type can represent numbers much larger or much smaller
than integers can, but only with seven significant digits of precision.

95 / 118

Round-off Error

▶ When a value with more than seven digits of precision is stored in a real variable,
only the most significant 7 bits of the number will be preserved.

▶ → The remaining information will be lost forever.

▶ For example, if the value 12, 345, 679.9 is stored in a real variable on a PC, it will
be rounded off to 12, 345, 680.0. This difference between the original value and
the number stored in the computer is known as round-off error.

▶ You will use the real data type in many places throughout this lecture and in your
programs after you finish this course. It is quite useful, but you must always
remember the limitations associated with round-off error, or your programs might
give you an unpleasant surprise.

▶ For example, if your program must be able to distinguish between the numbers
1, 000, 000.0 and 1, 000, 000.1, then you cannot use the standard real data type.

▶ It simply does not have enough precision to tell the difference between these two
numbers!

96 / 118

Round-off Error

▶ When a value with more than seven digits of precision is stored in a real variable,
only the most significant 7 bits of the number will be preserved.

▶ → The remaining information will be lost forever.
▶ For example, if the value 12, 345, 679.9 is stored in a real variable on a PC, it will

be rounded off to 12, 345, 680.0. This difference between the original value and
the number stored in the computer is known as round-off error.

▶ You will use the real data type in many places throughout this lecture and in your
programs after you finish this course. It is quite useful, but you must always
remember the limitations associated with round-off error, or your programs might
give you an unpleasant surprise.

▶ For example, if your program must be able to distinguish between the numbers
1, 000, 000.0 and 1, 000, 000.1, then you cannot use the standard real data type.

▶ It simply does not have enough precision to tell the difference between these two
numbers!

96 / 118

Round-off Error

▶ When a value with more than seven digits of precision is stored in a real variable,
only the most significant 7 bits of the number will be preserved.

▶ → The remaining information will be lost forever.
▶ For example, if the value 12, 345, 679.9 is stored in a real variable on a PC, it will

be rounded off to 12, 345, 680.0. This difference between the original value and
the number stored in the computer is known as round-off error.

▶ You will use the real data type in many places throughout this lecture and in your
programs after you finish this course. It is quite useful, but you must always
remember the limitations associated with round-off error, or your programs might
give you an unpleasant surprise.

▶ For example, if your program must be able to distinguish between the numbers
1, 000, 000.0 and 1, 000, 000.1, then you cannot use the standard real data type.

▶ It simply does not have enough precision to tell the difference between these two
numbers!

96 / 118

Round-off Error

▶ When a value with more than seven digits of precision is stored in a real variable,
only the most significant 7 bits of the number will be preserved.

▶ → The remaining information will be lost forever.
▶ For example, if the value 12, 345, 679.9 is stored in a real variable on a PC, it will

be rounded off to 12, 345, 680.0. This difference between the original value and
the number stored in the computer is known as round-off error.

▶ You will use the real data type in many places throughout this lecture and in your
programs after you finish this course. It is quite useful, but you must always
remember the limitations associated with round-off error, or your programs might
give you an unpleasant surprise.

▶ For example, if your program must be able to distinguish between the numbers
1, 000, 000.0 and 1, 000, 000.1, then you cannot use the standard real data type.

▶ It simply does not have enough precision to tell the difference between these two
numbers!

96 / 118

Floating Point Arithmetic

▶ Truncation can happen because of finite precision

1.00000
0.0000123
1.00001

▶ Machine precision ε is smallest number such that 1+ ε ̸= 1
▶ Be very careful about roundoff.

97 / 118

How to speak to a Computer
▶ When a computer executes a program, it executes a string of very simple

operations such as load, store, add, subtract, multiply, and so on.

▶ Each such operation has a unique binary pattern called an operation code (op
code) to specify it.

▶ The program that a computer executes is just a string of op codes (and the data
associated with the op codes) in the order necessary to achieve a purpose.

▶ Op codes are collectively called machine language, since they are the actual
language that a computer recognizes and executes.

▶ Unfortunately, we humans find machine language very hard to work with.
▶ We prefer to work with English-like statements and algebraic equations that are

expressed in forms familiar to us, instead of arbitrary patterns of zeros and ones.
We like to program computers with high-level languages.

→ We write out our instructions in a high-level language and then use special
programs called compilers and linkers to convert the instructions into the machine
language that the computer understands.

98 / 118

How to speak to a Computer
▶ When a computer executes a program, it executes a string of very simple

operations such as load, store, add, subtract, multiply, and so on.
▶ Each such operation has a unique binary pattern called an operation code (op

code) to specify it.

▶ The program that a computer executes is just a string of op codes (and the data
associated with the op codes) in the order necessary to achieve a purpose.

▶ Op codes are collectively called machine language, since they are the actual
language that a computer recognizes and executes.

▶ Unfortunately, we humans find machine language very hard to work with.
▶ We prefer to work with English-like statements and algebraic equations that are

expressed in forms familiar to us, instead of arbitrary patterns of zeros and ones.
We like to program computers with high-level languages.

→ We write out our instructions in a high-level language and then use special
programs called compilers and linkers to convert the instructions into the machine
language that the computer understands.

98 / 118

How to speak to a Computer
▶ When a computer executes a program, it executes a string of very simple

operations such as load, store, add, subtract, multiply, and so on.
▶ Each such operation has a unique binary pattern called an operation code (op

code) to specify it.
▶ The program that a computer executes is just a string of op codes (and the data

associated with the op codes) in the order necessary to achieve a purpose.

▶ Op codes are collectively called machine language, since they are the actual
language that a computer recognizes and executes.

▶ Unfortunately, we humans find machine language very hard to work with.
▶ We prefer to work with English-like statements and algebraic equations that are

expressed in forms familiar to us, instead of arbitrary patterns of zeros and ones.
We like to program computers with high-level languages.

→ We write out our instructions in a high-level language and then use special
programs called compilers and linkers to convert the instructions into the machine
language that the computer understands.

98 / 118

How to speak to a Computer
▶ When a computer executes a program, it executes a string of very simple

operations such as load, store, add, subtract, multiply, and so on.
▶ Each such operation has a unique binary pattern called an operation code (op

code) to specify it.
▶ The program that a computer executes is just a string of op codes (and the data

associated with the op codes) in the order necessary to achieve a purpose.
▶ Op codes are collectively called machine language, since they are the actual

language that a computer recognizes and executes.

▶ Unfortunately, we humans find machine language very hard to work with.
▶ We prefer to work with English-like statements and algebraic equations that are

expressed in forms familiar to us, instead of arbitrary patterns of zeros and ones.
We like to program computers with high-level languages.

→ We write out our instructions in a high-level language and then use special
programs called compilers and linkers to convert the instructions into the machine
language that the computer understands.

98 / 118

How to speak to a Computer
▶ When a computer executes a program, it executes a string of very simple

operations such as load, store, add, subtract, multiply, and so on.
▶ Each such operation has a unique binary pattern called an operation code (op

code) to specify it.
▶ The program that a computer executes is just a string of op codes (and the data

associated with the op codes) in the order necessary to achieve a purpose.
▶ Op codes are collectively called machine language, since they are the actual

language that a computer recognizes and executes.
▶ Unfortunately, we humans find machine language very hard to work with.
▶ We prefer to work with English-like statements and algebraic equations that are

expressed in forms familiar to us, instead of arbitrary patterns of zeros and ones.
We like to program computers with high-level languages.

→ We write out our instructions in a high-level language and then use special
programs called compilers and linkers to convert the instructions into the machine
language that the computer understands.

98 / 118

Programming Languages

▶ There are many different high-level languages, with different characteristics.
▶ Some of them are designed to work well for business problems, while others are

designed for general scientific use.
▶ Still others are especially suited for applications like operating systems

programming.

→ It is important to pick a proper language to match the problem that you are
trying to solve.

99 / 118

Aspects of Languages

Primitive constructs:
▶ English: words
▶ Programming language: numbers, strings, simple operators

Syntax:
▶ English:

▶ ”cat dog boy” → not syntactically valid
▶ ”cat hugs boy” → syntactically valid

▶ Programming language:
▶ ”hi”5 → not syntactically valid
▶ 3.2 ∗ 5 → syntactically valid

100 / 118

Aspects of Languages

▶ Semantics is the meaning associated with a syntactically correct string of symbols
with no static semantic errors*.

▶ English: can have many meanings, such as “Flying planes can be dangerous”
▶ Programming languages: have only one meaning but may not be what

programmer intended.
*For compiled languages, static semantics essentially include those semantic rules that can be checked at compile time. Examples include checking

that every identifier is declared before it is used (in languages that require such declarations) or that the labels on the arms of a case statement are

distinct.

101 / 118

Where things go wrong

▶ syntactic errors
▶ common and easily caught

▶ static semantic errors
▶ some languages check for these before running program can cause unpredictable

behavior
▶ no semantic errors but different meaning than what

programmer intended
▶ program crashes, stops running
▶ program runs forever
▶ program gives an answer but different than expected

102 / 118

There are only two kinds of (program-
ming) languages: the ones people
complain about and the ones nobody
uses.

— Bjarne Stroustrup (designer of C++)

103 / 118

Top Programming Languages 2024
https://spectrum.ieee.org/top-programming-languages-2024

▶ Python is one of the most popular programming languages worldwide.
▶ Python is a major tool for scientific computing, accounting for a rapidly rising

share of scientific work around the globe.

104 / 118

https://spectrum.ieee.org/top-programming-languages-2024

Why should YOU program?

▶ Nearly all of the most exciting and
important technologies, arts, and
sciences of today and tomorrow are
driven by computing.

▶ Understanding computing illuminates
deep insights and questions into the
nature of our minds, our culture, or
even our universe.

105 / 118

Let’s complain about...

106 / 118

What is Python?

▶ Python is a general purpose programming language conceived in 1989 by Dutch
programmer Guido van Rossum.

▶ Python is free and open source, with development coordinated through the
Python Software Foundation https://www.python.org/psf/).

▶ Python has experienced rapid adoption in the last decade, and is now one of the
most popular programming languages.

107 / 118

https://www.python.org/psf/

Common uses

Python is a general purpose language used
in almost all application domains:
▶ communications
▶ web development
▶ graphical user interfaces
▶ games, multimedia, data processing,

security, etc.
▶ Machine Learning, Artificial

Intelligence

Used extensively by Internet service and
high tech companies such as
▶ Google
▶ Dropbox
▶ Reddit
▶ YouTube
▶ Walt Disney Animation,...

→ Often used to teach computer science and programming

→ For reasons we will discuss, Python is particularly popular within the
scientific community

108 / 118

Statistics from supercomputer users

109 / 118

Some features

▶ Python is a high level language suitable for rapid development.
▶ It has a relatively small core language supported by many libraries.
▶ A multi-paradigm language, in that multiple programming styles are supported

(procedural, object-oriented, functional,…).
▶ Interpreted rather than compiled.

110 / 118

Syntax and Design

▶ One nice feature of Python is its elegant syntax — we’ll see many examples later
on.

▶ Elegant code might sound superfluous but in fact it’s highly beneficial because it
makes the syntax easy to read and easy to remember.

▶ Remembering how to read from files, sort dictionaries and other such routine
tasks means that you don’t need to break your flow in order to hunt down correct
syntax.

▶ Closely related to elegant syntax is elegant design.
▶ Features like iterators, generators, list comprehensions, etc. make Python highly

expressive, allowing you to get more done with less code.

111 / 118

https://docs.python.org/

112 / 118

Install Python
https://www.python.org/downloads/

Find the installation you need (Linux, MacOS, Windows)

113 / 118

https://www.python.org/downloads/

Get Python

▶ You can download and install Python
directly from https://www.python.org.

▶ Since we’re going to use several
libraries for numerical computation
(numpy), data analysis (pandas),
machine learning (scikit-learn), and
visualization (matplotlib), it is easier
to install Anaconda, which bundles all
things required
https://www.continuum.io/downloads.

114 / 118

https://www.python.org
https://www.continuum.io/downloads

Computational Infrastructure

▶ You don’t need to install Python.
▶ All you need is a device with a browser.
▶ → We use a cloud server that has all the necessary libraries and compilers

installed (see the crash course later today, or the TA session).
▶ → We use nuvolos.cloud (see later today and the TA session!).

115 / 118

A Microsoft Azure Center

116 / 118

Some source material

I will not follow a textbook, but will point in my slides
to the relevant literature.
Some useful textbooks:
▶ Machine Learning: a Probabilistic Perspective

K. Murphy, MIT Press, 2012. https://www.cs.
ubc.ca/~murphyk/MLbook/index.html

▶ An Introduction to Statistical Learning
Gareth James, Daniela Witten, Trevor Hastie and
Robert Tibshirani; Springer, 8th editon, 2017.
https://www-bcf.usc.edu/~gareth/ISL/

▶ Deep Learning
Ian Goodfellow and Yoshua Bengio and Aaron
Courville; MIT Press 2016.
http://www.deeplearningbook.org

117 / 118

https://www.cs.ubc.ca/~murphyk/MLbook/index.html
https://www.cs.ubc.ca/~murphyk/MLbook/index.html
https://www-bcf.usc.edu/~gareth/ISL/
http://www.deeplearningbook.org

Some source material

▶ Pattern Recognition and Machine Learning
C. M Bishop; Springer 2006. (pdf freely available)

▶ Python Machine Learning
S. Raschka; PACKT Publishing 2017

▶ Introduction to Machine Learning
Ethem Alpaydin; MIT Press 2014.

▶ A Primer on Scientific Programming with
Python
Hans Petter Langtangen; Springer 2016.

▶ Mathematics for Machine Learning
Deisenroth, A. Aldo Faisal, and Cheng Soon Ong;
Cambridge University Press 2020.

▶ Introduction to Computatiton and
Programming using Python
J. Guttag. MIT Press, 2013
https://www.cs.ubc.ca/murphyk/MLbook/index.html

118 / 118

https://www.cs.ubc.ca/murphyk/MLbook/index.html

