
Lecture 4

Finger exercise 1:

Lets step together over the pandas notebook: 01_python_basics_python_data_analysis_lib.ipynb

Finger exercise 2:

- -Lets compute the slope of this function: sin(x) for x = [0..2*pi] by using finite differences.
- Vary the size of h to see how the close we are to the true solution. (try h = 0.5, 0.1, 0.01, 0.0001)

$$f'(x_j) \approx \frac{f(x_j) - f(x_{j-1})}{h}$$

Finger exercise 3:

Lets look at this code to compute the minimum of the function together.

03_gradient_descent.py

Compute the minimum value of $f(x) = -\sin(x)$ for x = [0..1.5*pi]Start the algorithm at x = 0.01What happens if you start the algorithm at x = 1.5*pi + 0.00001?

Finger exercise 4:

Lets step together over the JAX notebook:

03_JAX_basics.ipynb

This is of key importance to get gradients automatically (Algorithmic differentiation, etc...).