Advanced Data Analytics — Lecture 3a

A Crash Course on Programming in Python

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

September 29th, 2025 | 10:15 - 12:00: Internef 126 | 16:30 - 18:00: Anthropole 3185

1/73

Before we start — some resources

Il Lecture slides and codes available on Nuvolos !!!
Extended tutorial on python here: python_refresher
If you are new to Python, this is a pre-requisite!!!

1/73

Outline of this mini-course in Python

1. Motivation — why Python.

2. First steps in Python.

3. Nonlinear equations and optimization.
4. Pointers to tutorials and literature.

2/73

Computational science in general

» Computational science: a rapidly growing multidisciplinary
field that uses advanced computing capabilities to understand
and solve complex problems.

» It is an area of science which spans many disciplines (comp.
finance, comp. econ, comp. physics, comp. biology).

» At its core it involves the development of models and
simulations to understand complex systems.

—> computational science aims to make the complexity of
those systems tractable.

3/73

Basics: von Neumann Architecture

https://computing.llnl.gov/tutorials/parallel_comp

» Virtually all computers have followed this basic design.
Comprised of four main components: Memory, Control Unit,
Arithmetic Logic Unit, Input/Output.

» Read/write, random access memory is used to store both
program instructions and data:

» Program instructions are coded data which tell the computer to
do something.
» Data is simply information to be used by the program.
» Control unit

> fetches instructions/data from memory, decodes the instructions
and then sequentially coordinates operations to accomplish the
programmed task.

» Arithmetic unit

» performs basic arithmetic operations.
» Input/Output

» interface to the human operator.

Control Arithmetic

Unit " Logic
Unit

CAps

(o
P
u

4/73

https://computing.llnl.gov/tutorials/parallel_comp

From a programming language to hardware

http://cse-1lab.ethz.ch/index.php/teaching/42-teaching/classes/577-hpcsei

» A computer is a “stupid” device, only understands “on” and “off"
» The symbols for these states are 0 and 1 (binary).
» First, programmers communicated in 0 and 1.

» Later, programs were developed to translate from symbolic notation to binary.
The first was called ‘*assembly”.

> add A, B (programmer writes in assembly language)
>1000110010100000 (assembly translates to machine language)

Advanced programming languages are better than “assembly”:

» programmer thinks in a more natural language.
» productivity of software development.
» portability.

5/73

http://cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/577-hpcsei

There are only two kinds of (program-
ming) languages: the ones people
complain about and the ones nobody
uses.

— Bjarne Stroustrup (designer of C++)

Let's complain about...

@ python’

What is Python?

» Python is a general purpose programming language conceived
in 1989 by Dutch programmer Guido van Rossum.

» Python is free and open source, with development
coordinated through the Python Software Foundation
https://www.python.org/psf/).

» Python has experienced rapid adoption in the last decade, and
is now one of the most popular programming languages.

8/73

https://www.python.org/psf/

Common uses

Python is a general purpose language used Used extensively by Internet service and
in almost all application domains: high tech companies such as
» communications > Google
» web development » Dropbox
» graphical user interfaces > Reddit
» games, multimedia, data processing, » YouTube
security, etc. » Walt Disney Animation,...
» Machine Learning, Artificial
Intelligence

— Often used to teach computer science and programming

— For reasons we will discuss, Python is particularly popular within the
scientific community

9/73

Top Programming Languages 2024
https://spectrum.ieee.org/the-top-programming-languages-2024
» Python is one of the most popular programming languages worldwide.

» Python is a major tool for scientific computing, accounting for a rapidly rising
share of scientific work around the globe.

Top Programming Languages 2024

Click a button to see a differently weighted ranking

HTHL 0.1817;
Rust 0.1506
Mathenatica 0.1275
[0.1196
Shel 0.117

10/73

https://spectrum.ieee.org/the-top-programming-languages-2024

Some features

» Python is a high level language suitable for rapid development.
» It has a relatively small core language supported by many libraries.

» A multi-paradigm language, in that multiple programming styles are supported
(procedural, object-oriented, functional,...)

» Interpreted rather than compiled.

11/73

Syntax and Design

» One nice feature of Python is its elegant syntax — we'll see many examples later
on.

» Elegant code might sound superfluous but in fact it's highly beneficial because it
makes the syntax easy to read and easy to remember.

» Remembering how to read from files, sort dictionaries and other such routine
tasks means that you don't need to break your flow in order to hunt down correct
syntax.

» Closely related to elegant syntax is elegant design.

P> Features like iterators, generators, list comprehensions, etc. make Python highly
expressive, allowing you to get more done with less code.

12/73

Get Python

| 2

|

You can download and install Python
directly from https://www.python.org

Since we're going to use several
libraries for numerical computation
(numpy), data analysis (pandas),
machine learning (scikit-learn), and
visualization (matplotlib), it is easier
to install Anaconda, which bundles all
things required
https://www.continuum.io/downloads

@ python’

{") ANACONDA.

13/73

https://www.python.org
https://www.continuum.io/downloads

https://docs.python.org/

Python » |English ~|[3120 ~| 312.0D »

Download

Download these documents

Docs by version

Python 3.13 (in development)
Python 3.12 (stable)

Python 3.11 (stable)

Python 3.10 (security-fixes)
Python 3.9 (security-fixes)
Python 3.8 (security-fixes)
Python 3.7 (EOL)

Python 3.6 (EOL)

Python 3.5 (EOL)
Python 3.4 (EOL)
Python 3.3 (EOL)
Python 3.2 (EOL)
Python 3.1 (EOL)
Python 3.0 (EOL)
Python 2.7 (EOL)
Python 2.6 (EOL)
Allversions

Other resources

PEP Index
Beginner's Guide

Book List

AudiolVisual Talks

Python Developer's Guide

Python 3.12.0 documentation

Welcomel! This is the official documentation for Python 3.12.0.

Parts of the documentation:

What's new in Python 3.127?

orall "Wnat's new” documents since 2.0

Tutorial
start here

Library Reference
keep this under your pillow

Language Reference
describes syntax and language elements

Python Setup and Usage

how to use Python on different platforms

Python HOWTOs

in-depth documents on specific topics
Indices and tables:

Global Module Index

quick access to all modules

General Index
all functions, ciasses, terms

Glossary

the most important terms explained

Installing Python Modules
installing from the Python Package Index & other
sources

Distributing Python Modules

publishing modules for installation by others

Extending and Embedding

tutorial for C/C++ programmers

Python/C API

reference for G/C++ programmers

FAQs

frequently asked questions (with answers!)

Search page

search this documentation

Complete Table of Contents
lists all sections and subsections

14/73

Install Python

https://www.python.org/downloads/

¢ python e - I

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows m l
|
|

Download Python 3.12.0

Looking for Python with a different 0S? Python for Windows,
Linux/UNIX, macOs, Other

Want to help test development versions of Python 3.13? Prer
Docker images

Find the installation you need (Linux, MacOS, Windows)

15/73

https://www.python.org/downloads/

2. First steps in Python — action required

16/73

List of examples

> 2.0.
> 2.1
> 2.2.
> 2.3.
> 2.4,

Setting up your environment.

Python basics.
Loops and Lists.
Functions and Branching.

Reading/writing Data.

17/73

Python Setup

A bare-bones development environment consists of:
- A text editor (e.g., gedit, emacs, vim)

— The Python interpreter (it is installed by default on
Ubuntu and almost any other Linux distribution)

— A terminal application to run the interpreter in.

See http://wiki.python.org/moin/
IntegratedDevelopmentEnvironments for a commented
list of IDEs with Python support.

18/73

Another helpful online tool

The Online Python Tutor is a free tool to visualize the execution of programs
step-by-step.

Python Tutor: Visualize code in Python, JavaScript,

C, C++, and Java

Python 3.6 lower right
known imitations
x =11, 2, 3]
y = [4,5, 6] 4
z=y Frames Objects
y=-
x =z Global frame

x = [1, 2, 3] # a different [1, 2, 3] list!

v |"hello”
y=x

x.append(4) i
y.append(5) foo

z=1[1, 2, 3, 4 5] # a different list! bar
x.append(6) /
y.append(7) oo /
y = "hello =

def foo(1st)
- 1st.append(“hello")
bar(1st)

Edit this code

Feel free to use it for the course exercises and your own code:

http://pythontutor.com/visualize.html
19/73

http://pythontutor.com/visualize.html

2.1 Python Basics

Python is an interpreted language.

It also features an interactive “shell” for evaluating
expressions and statements immediately.

The Python shell is started by invoking the command

n a terminal window.

e” for more information.

20/73

Python Basics (I1)

Expressions can be entered at the Python shell
prompt (the *>>>" at the start of a line); they are
evaluated and the result is printed:

>>> 242
4

A line can be continued onto the next by ending it with
the character *\’; for example:

>>> "hello™ +
. " world!"™
"hello world!”

The prompt changes to ‘. . ." on continuation lines.

Reference:

http://docs. python.org/reference/lexical_analysis htm#ine-structure

21/73

Basic Types

Basic object types in Python:

bool The class of the two boolean constants
True, False.

int Integer numbers: 1, -2, ...
float Double precision floating-point numbers,
eg: 3.1415, -1le-3.
str Text (strings of byte-size characters).
list Mutable list of Python objects
dict Key/value mapping

No type declaration needed — Python does that for you on the fly

22/73

Type Conversions

str(x) Converts the argument x to a string; for
numbers, the base 10 representation is
used.

int(x) Converts its argument x (a number or a
string) to an integer; if x is a a
floating-point literal, decimal digits are
truncated.

float(x) Converts its argument x (a number or a
string) to a floating-point number.

check the type of a variable by typing >>> type(a)

23/73

String Literals

There are several ways to express string literals in

Python.

Single and double quotes can be used
interchangeably:

>>> "a string" == ’'a string’

True

You can use the single quotes inside double-quoted
strings, and viceversa:

>>> a = "Isn"t it ok?"
»>>>» b = ""Yes", he said.’

24/73

String Literals Il

Multi-line strings are delimited by three quote
characters.

>>> a = ""P"This is a s

+hat

than one
cnan

mrrn

In other words, you need not use the backslashes “\
at the end of the lines.

25/73

Operators

All the usual unary and binary arithmetic operators

are defined in Python: +, -, », /, »+ (exponentiation),
<<, »>, etc.

Logical operators are expressed using plain English
words: and, or, not.

Numerical and string comparison also follows the
usual notation: <, >, <=, ==, |=, .,

Reference:

- http://docs.python.org/library/stdtypes. himi#ooolean-operations-an:

- hitp://docs.python.org/library/stdtypes. himi#co

26/73

Your first exercise to compute

27/73

Operators |l

Some operators are defined for non-numeric types:

x> + ‘NIL
‘UNTL?

Some support operands of mixed type:

>>> "a" « 2
aa

>3>> 2 % "a"
r :,'_a'

Some do not:

>>> "aaa" / 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for /: ’'str’ and 'int’

28/73

Operators |l

The “%" operator computes the remainder of integer division.

>>> 9 % 2
1

29/73

Assignments

Assignment is done via the ‘=" statement:

>>> a = 1
B3 print (&)
1

There are a few shortcut notations:

a += bshortfora = a + b,
a —= bshortfora = a - b,
a »= bshortfora = a ~ b,

etc. — one for every legal operator.

30/73

Assignments ||

Python variables are just “names” given to values.

This allows you to reference the string ' Python’ by
the name a:

a "Hello!"

b =a Global variables str

e "Hello!™
Edit code a|v -

-

__ The same object can be given many names! _>

31/73

The “is” Operator

The is operator allows you to test whether two names refer to the
same object:

>>> a =1

>>> b =1

>>> a is b
True

32/73

The help Function

help(fn) Display help on the function named fn

Q: What happens if you type these at the prompt?
— help (abs)
— help (max)

33/73

Functions

Functions are called by postfixing the function name
with a parenthesized argument list.

»>»> int ("42")
42

>>> int(4.2)
4

>>> float (42)
42.0

>>> str(d42)

ra0r

>>> str()

rr

Attention — rounding towards ZERO

34/73

How to execute source code

exampleO_hello.py

— Store a file hello.py with this content:

print ('Hello, world!')

— Execute it with $§ python hello.py

35/73

2.2 Loops and Lists

example3_while.py

» The while loop is used to repeat a set of statements as long as a condition is

true.

» Example: The task is to generate the rows of the table of C and F values.

» The C value starts at -20 and is incremented by 5 as long as C < 40.

» For each C value we compute the corresponding F value and write out the two
temperatures.

» In addition, we also add a line of hyphens above and below the table. We postpone
to nicely format the C and F columns of numbers and perform for simplicity a plain

print(C, F) statement inside the loop.

print ("
C = -20
dC = 5

while C <= 40:

F = (9.0/5)*C + 32

print(C, F)
C=C+dC

print ("

||)

||)

#

HOH R R R W R

table heading

start value for C

increment of C in loop

loop heading with condition
1st statement inside loop

2nd statement inside loop

3rd statement inside loop

end of table line (after loop)

$ python example3_while.py

36/73

Loop Implementation of a Sum

example4_sum.py

8 e
Sln(X)NX*§+*I*W+

x=1.2 # assign some value
N=25 # mazimum power in sum

k=1

s=X

sign=1.0

import math

while k<N :
sign = -sign
k = k+2

term = sign*x**k/math.factorial (k)
s = s + term

print('sin(%g)=g approximation with %d terms' % (x, s, N))

37/73

Lists

» Up to now a variable has typically
contained a single number.

» Sometimes numbers are naturally grouped
together.

» A Python list can be used to represent
such a group of numbers in a program.

» With a variable that refers to the list, we
can work with the whole group at once,
but we can also access individual elements
of the group.

varl 2

varz 0 20

3 40

Fig. 2.1 Mlustration of two variables: vari refers to an int object with value 21, created
by the statement varil = 21, and var2 refers to a list object with value [20, 21, 29,
4.0], i.e., three int objects and one float object, created by the statement var2 = [20,
21, 29, 4.0].

Fig. From H.P. Langtangen

» The figure illustrates the difference
between an int object and a list object.

» In general, a list may contain a sequence
of arbitrary objects in a given order.
Python has great functionality for
examining and manipulating such

sequences of objects.
38/73

Basic operations in Lists — type

» To create a list with the numbers from the first column in our table, we just put
all the numbers inside square brackets and separate the numbers by commas:

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list
>>> C.append(35)

>>> C

[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

» Two lists can be added:
>>> C = C + [40, 45]

>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

39/73

Basic operations in Lists — type

» New elements can be inserted anywhere in the list:

>>> C.insert(0,-15)
>>> C

[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

» With del C[i] we can remove an element with index i from the list C.

>>> del C[2] #delete 3rd element

>>> C

[-15, -10, O, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] #delete what is mow the 3rd element
>>> C

[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> len(C) #length of list

11

40/73

How to represent Vectors

A Python program may use a list or tuple to represent a vector:

vl = [x, y] #list of wartables

v2 = (-1, 2) #list of numbers

v3 = (x1, x2, x3) #tuple of variables
from math import exp

v4 = [exp(-i*0.1) for i in range(150)]

41/73

Basic operations (II) — “for loop”

» When data are collected in a list, we often want to perform the same operations on each
element in the list.

» We then need to walk through all list elements. Computer languages have a special
construct for doing this conveniently.

» This construct in Python and many other languages called a “for loop".

exampleb5_forloop.py example6_forloop.py
degrees = [0, 10, 20, 40, 100] Cdegrees = []
. . n =21
for C in degrees: C_min - -10
print("list element:", C) C_max = 40
print("The degrees list has", dC = (C_max - C_min)/float(n-1)

1 (d) # increment in C
en(degrees), for i in range(0, n):

"elements") C = -10 + i*dC

Cdegrees . append(C)
Fdegrees = []

index = 0 for C in Cdegrees:

while index < len(somelist) F = (9.0/5)*C + 32
element = somelist[index] Feegees e ()
<process element> for i in range(len(Cdegrees)):
index+=1 C = Cdegrees[il

F = Fdegrees[il
print("%5.1f %5.1f" % (C, F))

42/73

2.3. Functions and Branching

The def statement starts a

RESEESEh function definition.

LI
A friendly function.
LN

print ("Helleo, " + name + "!")

i + F 11 = T T 1 5 Bale
¥ LCNe customary greetllnqg

greet ("world")

43/73

How to define new functions (II)

def greet (name):

LU

fFfrT1amAaltr Firme—~t T M

mern

print ("Hello, "™ + name +

the customary

greet ("world")

Indentation is significant
in Python: it is used to
delimit blocks of code, like
{*and ‘}’ in Java and C.

Il!")

44/73

How to define new functions (I11)

(This is a comment. It is
ignored by Python, just

def greet (name):
won like blank lines.)

A Frdarme] 11 P
A Fr1encLly runcticn.

[

print ("Hello, ™ + name + "!7)

the customary greeting
greet ("world"}

45/73

How to define new functions (1V)

example7_greet.py

This calls the function just

def greet (name) : defined.

T]

mrre

print ("Hello, " + name + "1}

T Y, I S e, (0 [
Cig CcCuscomary ering

(= 38 il =l) S %

greet ("world"™)

46 /73

How to define new functions (V)

What is this? The answer

1aal
def grest (name) : in the next exercise!

ALY

A friendly function. l
LLRLNi]
et TR ™ 3 s V) -

the customary greeting

greet ("world™)

47/73

Modules

The import statement reads a .pv file, executes it,

and malkes its contents available to the current
program.

>>> import hello
Hello, world!

Modules are only read once, no matter how many
times an import statement is issued.

48/73

Modules 11

Modules are namespaces: functions and variables
defined in a module must be prefixed with the module
name when used in other modules:

>>> hello.greet ("Bob")
Hello, Bob!

To import definitions into the current namespace, use

the ‘from x import y' form:

»>>> from fractions import Fraction

49/73

Conditionals

Conditional execution uses the if statement:

if expr:
indented block
elif other-expr:
indented block
else:
xecuted if none of the above matchec

The elif can be repeated, with different conditions, or
left out entirely.

Also the else clause is optional.

Q: Where's the ‘end if' ?
There’s no ‘end if’: indentation delimits blocks!

50/73

Branching — example “hat” function

example9_branching.py

Branching in general

0, x<0

, 0<x<1
N(x) = =%

2-x, 1<x<?2

0, x> 2

if conditionil:

<block of statements>
elif condition2:
<block of statements>
elif condition3:
<block of statements>
else:

<block of statements>
<next statement>

def hat_function(x):
hat function
if x < 0:
return 0.0
elif 0 <= x < 1:
return x
elif 1 <= x < 2:
return 2 - x
elif x >= 2:
return 0.0
print (hat_function(1.4))

51/73

Exercises

Exercise A: Type and run the code on the previous
page at the interactive prompt. (Type indentation
spaces, too!)

What does help (greet) print? What's the result of
evaluating the function greet ("world")?

Exercise B: Type the same code in a file named
hello.py, then type import hello at the interactive
prompt. What happens?

52/73

2.4. Input Data

c=21
F = (9./5)*%C + 32
print (F)

» In this program, Cis input data in the sense that C must be known before the
program can perform the calculation of F.

» The results produced by the program, here F, constitute the output data. Input
data can be hard-coded in the program as we do above.

» We explicitly set variables to specific values C = 21.

A\

This programming style may be suitable for small programs.

» In general, however, it is considered good practice to let a user of the program
provide input data when the program is running. — There is then no need to
modify the program itself when a new set of input data is to be explored.

53/73

Reading Keyboard Input

examplelO_read.py

We may ask the user a question C=7 and wait for the user to enter a number. The
program can then read this number and store it in a variable C.

C = input('C=7 ')
C = float(C)

F = (9./5)*C + 32
print (F)

The raw_input function always returns the user input as a string object. That is, the
variable C above refers to a string object.

If we want to compute with this C, we must convert the string to a floating-point
number: C = float(C).

54 /73

Reading from Command Line

examplell_readsys.py

» Inside the program we can fetch the text "number” as sys.argv[1]. The sys module has a list
argv containing all the command-line arguments to the program, i.e., all the "words" appearing
after the program name when we run the program.

» Here there is only one argument and it is stored with index 1 . The first element in the sys.argv
list, sys.argv[0], is always the name of the program.

» A command-line argument is treated as a text, so sys.argv[1] refers to a string object. Since
we interpret the command-line argument as a number and want to compute with it, it is
necessary to explicitly convert the string to a float object.

Run as:
$python
examplell_readsys.py 2

import sys
print("This is the name of the script: ", sys.argv[0])

C = input("please write the degrees celcius outside:")

F= 9xfloat(C)/5 + 32
print("it is ", F , " degrees F")

print ("Number of arguments: ", len(sys.argv))
print("The arguments are: " , str(sys.argv))

55/73

Reading from a File

examplel2_readfile.py

» We have a text file containing numbers: say data.txt

» We want to get first column in al, second in a2 and so on.

» Note: there are plenty of option on how to read from files — RTFM

1234
5678

9 10 11 12
13 14 15 16

al = []
a2 = []
a3 = []
ad = []
with open('

data.txt') as f:

for line in f:
data = line.split()

al.
a2.
a3.
ad.

append (int (data[0]))
append (int (data[1]))
append (int (data[2]))
append (int (datal[3]))

print(al, a2, a3, a4)

f.close()

56 /73

Other things to learn about Python

The time and scope of this course is rather limited.

Here is an (incomplete) list of Python features that you
might want to look up as you become more
experienced in the language:

Generators and Iterators

Decorators

Class-level attributes, classmethods,
staticmethods

Properties and accessors

— Metaclasses

57/73

Do not re-invent the wheel — NumPy

NumPy is a package for linear algebra and advanced
mathematics in Python.

It provides a fast implementation of multidimensional
numerical arrays (C/FORTRAN like), vectors,
matrices, tensors and operations on them.

Use it if: you long for MATLAB core features.

See also: http://www.numpy.org/

58/73

Do not re-invent the wheel — SciPy

“SciPy is open-source software for mathematics,
science, and engineering. [...] The SciPy library
provides many user-friendly and efficient numerical
routines such as routines for numerical integration
and optimization.”

One of its main aim is to provide a reimplementation
of the MATLAB toolboxes.

Use it if: you long for MATLAB toolbox features.

See also: hitp://www.scipy.org/

59/73

Pandas

Pandas is a Python data analysis library, that provides
optimized routines for analyzing 2D, 3D, 4D data.

“Pandas [.. .| enables you to carry out your entire data
analysis workflow in Python without having to switch
to a more domain specific language like R.”

Use it if: you need features from R, plyr, reshape?.

60/73

Writing to a file — e.g. with numpy

examplel2_writefile.py

import numpy as np
mat=np.matrix([[1, 2, 31,[4, 5, 61,[7, 8, 911)

print (mat)
np.savetxt ('matrix.txt',mat,fmt='%.2f")

61/73

Curve Plotting

» Visualizing a function f{(x) is done by drawing the curve y = f(x) in an x—y
coordinate system.

» When we use a computer to do this task, we say that we plot the curve.

» Technically, we plot a curve by drawing straight lines between n points on the
curve.

» The more points we use, the smoother the curve appears.

» Suppose we want to plot the function f{x) for a < x < b.

xi=a-+ih, h=

62/73

Matplotlib: publication quality plotting library

matplotlib "is a python 2D plotting library which
produces publication quality figures in a variety of
hardcopy formats and interactive environments across
platforms. matplotlib can be used in python scripts,
the python and ipython shell (ala MATLAB® or
Mathematica®), web application servers, and six
graphical user interface toolkits.”

63/73

Matplotlib: a basic example

examplel3_plot.py

Let us plot the curve s for values between 0 and 2 . First we generate equally spaced
coordinates for t. Then we compute the corresponding s values at these points, before
we call the plot(t,s) command to make the curve plot.

import matplotlib.pyplot as plt
import numpy as np 20

About as simple as it gets, folks

t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2%np.pi*t)
plt.plot(t, s)

0

voltage (mV)

plt.xlabel('time (s)')

plt.ylabel('voltage (mV)')

plt.title('About as simple as it gets, folks')
plt.grid(True)

plt.savefig("test.png") 0g

0.0 05 10 15 2.0

plt.show() time ()

To include the plot in electronic documents, we need a hardcopy of the figure in PostScript, PNG, or
another image format. The savefig function saves the plot to files in various image formats.

64/73

Want more?

Find, install and publish Python packages
with the Python Package Index

PyPl is the index of Python software
packages. It currently indexes 506,250
packages, so the choice is really vast. Orrossepiacs

Almost all packages can be installed with a
single command by running pip install
packagename.

506,250 projects 5,261,717 releases 10,032,052files 774,493 users

The Python Package Index (PyPI) is a repository of software for the

pgthon Python programming language.

Package PyPI helps you find and install software developed and shared by the Python
(\’ Index community. Learn about installing packages .

Package authors use PyP! to distribute their software. Learn how to package your
Python code for PyPI 5.

65/73

[I1. Nonlinear equations & optimization.

» Our course heavily relies on solving large systems of nonlinear
equations or (un-) constraint optimization problems.

» In Python, you have plenty of options, e.g.:

» SciPy.org

» PyOpt.org

» IPOPT (https://www.coin-or.org/lpopt;
https://github.com/xuy/pyipopt)

66/73

https://www.coin-or.org/lpopt
https://github.com/xuy/pyipopt

Constrained optimization with SciPy

The minimize function also provides an interface to several constrained minimization
algorithm.

As an example, the Sequential Least SQuares Programming optimization algorithm
(SLSQP) will be considered here.

This algorithm allows to deal with constrained minimization problems of the form:

min F(x)
subject to Cj(X) =0, j=1,..., MEQ
G(x) >0, j= MEQ +1,....M
XL< x< XU, I=1,...,N.

67/73

Constrained optimization — example

As an example, let us consider the problem of optimizing the
function:

f(x,y) = 2xy + 2x- X* - 2)°

subject to an equality and an inequality constraints defined as:

X —y=0
y—1>0

68/73

Example for Optimization

import numpy as np
from scipy.optimize import minimize
def func(x, sign=1.0):
""" Objective function """
return sign*(2*x[0]*x[1] + 2xx[0] - x[0]**2 - 2*x[1]*x2)
def func_deriv(x, sign=1.0):
""" Derivative of objective fumction """
dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
dfdx1l = sign*(2*x[0] - 4*x[1])
return np.array([dfdx0, dfdxl 1)

wun
Note that since minimize only minimizes functions, the sign parameter is
introduced to multiply the objective function (and its derivative) by -1 in order to perform a mazimization.
Then constraints are defined as a sequence of dictionaries, with keys type, fun and jac.
i
cons = ({'type': 'eq',

'fun' : lambda x: np.array([x[0]**3 - x[11]),

'jac' : lambda x: np.array([3.0%(x[0]**2.0), -1.01)},

{'type': 'ineq',

'fun' : lambda x: np.array([x[1] - 1]),

'jac' : lambda x: np.array([0.0, 1.01)})

"!""g constrained optimization as:"""

res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
constraints=cons, method='SLSQP', options={'disp': Truel})

print(res.x)

69/73

Root finding (nonlinear equations)

Finding a root of a set of non-linear equations can be achieve using the root function.
Several methods are available, amongst which hybr (the default) and 1m which
respectively use the hybrid method of Powell and the LevenbergMarquardt method
from MINPACK.

Consider a set of non-linear equations

Xp cos (x1) = 4,

XoX1 — X1 = b.

70/73

Example for Nonlinear Equations

demo/python_examples/opt_nonlinear/example2_nonlinear.py

import numpy as np
from scipy.optimize import root

def func2(x):
f = [x[0] * np.cos(x[1]) - 4, x[1]*x[0] - x[1] - 5]

df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[11)], [x[1], x[0] - 11]1)
return f, df

sol = root(func2, [1, 1], jac=True, method='lm')
solution = sol.x

print("the solution of this nonlinear set of equations is: ", solution)

71/73

V. Pointers to tutorials and literature

There is an unlimited amount of tutorials and source codes on the web available. Here
is an incomplete list:

» The Python tutorial: http://docs.python.org/tutorial
» Quantecon

» Books: A Primer on Scientific Programming with Python (Hans Petter
Langtangen)

72/73

http://docs.python.org/tutorial
https://python-programming.quantecon.org/intro.html

Questions?

1. Advice — RTFM https:
//en.wikipedia.org/wiki/RTFM

2. Advice — http://1lmgtfy.com/
http://1lmgtfy.com/?q=
introduction+to+python

73/73

https://en.wikipedia.org/wiki/RTFM
https://en.wikipedia.org/wiki/RTFM
http://lmgtfy.com/
http://lmgtfy.com/?q=introduction+to+python
http://lmgtfy.com/?q=introduction+to+python

