
Advanced Data Analytics — Lecture 3a
A Crash Course on Programming in Python

Simon Scheidegger
Department of Economics, University of Lausanne, Switzerland

September 29th, 2025 | 10:15 - 12:00: Internef 126 | 16:30 - 18:00: Anthropole 3185

1 / 73

Before we start — some resources

!!! Lecture slides and codes available on Nuvolos !!!
Extended tutorial on python here: python_refresher
If you are new to Python, this is a pre-requisite!!!

1 / 73

Outline of this mini-course in Python

1. Motivation — why Python.
2. First steps in Python.
3. Nonlinear equations and optimization.
4. Pointers to tutorials and literature.

2 / 73

Computational science in general

▶ Computational science: a rapidly growing multidisciplinary
field that uses advanced computing capabilities to understand
and solve complex problems.

▶ It is an area of science which spans many disciplines (comp.
finance, comp. econ, comp. physics, comp. biology).

▶ At its core it involves the development of models and
simulations to understand complex systems.

=⇒ computational science aims to make the complexity of
those systems tractable.

3 / 73

Basics: von Neumann Architecture
https://computing.llnl.gov/tutorials/parallel_comp

▶ Virtually all computers have followed this basic design.
Comprised of four main components: Memory, Control Unit,
Arithmetic Logic Unit, Input/Output.

▶ Read/write, random access memory is used to store both
program instructions and data:
▶ Program instructions are coded data which tell the computer to

do something.
▶ Data is simply information to be used by the program.

▶ Control unit
▶ fetches instructions/data from memory, decodes the instructions

and then sequentially coordinates operations to accomplish the
programmed task.

▶ Arithmetic unit
▶ performs basic arithmetic operations.

▶ Input/Output
▶ interface to the human operator.

4 / 73

https://computing.llnl.gov/tutorials/parallel_comp

From a programming language to hardware
http://cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/577-hpcsei

▶ A computer is a “stupid” device, only understands “on” and “off”
▶ The symbols for these states are 0 and 1 (binary).
▶ First, programmers communicated in 0 and 1.
▶ Later, programs were developed to translate from symbolic notation to binary.

The first was called ‘‘assembly”.

> add A, B (programmer writes in assembly language)
>1000110010100000 (assembly translates to machine language)

Advanced programming languages are better than “assembly”:
▶ programmer thinks in a more natural language.
▶ productivity of software development.
▶ portability.

5 / 73

http://cse-lab.ethz.ch/index.php/teaching/42-teaching/classes/577-hpcsei

There are only two kinds of (program-
ming) languages: the ones people
complain about and the ones nobody
uses.

— Bjarne Stroustrup (designer of C++)

6 / 73

Let’s complain about...

7 / 73

What is Python?

▶ Python is a general purpose programming language conceived
in 1989 by Dutch programmer Guido van Rossum.

▶ Python is free and open source, with development
coordinated through the Python Software Foundation
https://www.python.org/psf/).

▶ Python has experienced rapid adoption in the last decade, and
is now one of the most popular programming languages.

8 / 73

https://www.python.org/psf/

Common uses
Python is a general purpose language used
in almost all application domains:
▶ communications
▶ web development
▶ graphical user interfaces
▶ games, multimedia, data processing,

security, etc.
▶ Machine Learning, Artificial

Intelligence

Used extensively by Internet service and
high tech companies such as
▶ Google
▶ Dropbox
▶ Reddit
▶ YouTube
▶ Walt Disney Animation,...

→ Often used to teach computer science and programming

→ For reasons we will discuss, Python is particularly popular within the
scientific community

9 / 73

Top Programming Languages 2024
https://spectrum.ieee.org/the-top-programming-languages-2024

▶ Python is one of the most popular programming languages worldwide.
▶ Python is a major tool for scientific computing, accounting for a rapidly rising

share of scientific work around the globe.

10 / 73

https://spectrum.ieee.org/the-top-programming-languages-2024

Some features

▶ Python is a high level language suitable for rapid development.
▶ It has a relatively small core language supported by many libraries.
▶ A multi-paradigm language, in that multiple programming styles are supported

(procedural, object-oriented, functional,…)
▶ Interpreted rather than compiled.

11 / 73

Syntax and Design

▶ One nice feature of Python is its elegant syntax — we’ll see many examples later
on.

▶ Elegant code might sound superfluous but in fact it’s highly beneficial because it
makes the syntax easy to read and easy to remember.

▶ Remembering how to read from files, sort dictionaries and other such routine
tasks means that you don’t need to break your flow in order to hunt down correct
syntax.

▶ Closely related to elegant syntax is elegant design.
▶ Features like iterators, generators, list comprehensions, etc. make Python highly

expressive, allowing you to get more done with less code.

12 / 73

Get Python

▶ You can download and install Python
directly from https://www.python.org

▶ Since we’re going to use several
libraries for numerical computation
(numpy), data analysis (pandas),
machine learning (scikit-learn), and
visualization (matplotlib), it is easier
to install Anaconda, which bundles all
things required
https://www.continuum.io/downloads

13 / 73

https://www.python.org
https://www.continuum.io/downloads

https://docs.python.org/

14 / 73

Install Python
https://www.python.org/downloads/

Find the installation you need (Linux, MacOS, Windows)

15 / 73

https://www.python.org/downloads/

2. First steps in Python → action required

16 / 73

List of examples

▶ 2.0. Setting up your environment.
▶ 2.1. Python basics.
▶ 2.2. Loops and Lists.
▶ 2.3. Functions and Branching.
▶ 2.4. Reading/writing Data.

17 / 73

Python Setup

18 / 73

Another helpful online tool
The Online Python Tutor is a free tool to visualize the execution of programs
step-by-step.

Feel free to use it for the course exercises and your own code:
http://pythontutor.com/visualize.html

19 / 73

http://pythontutor.com/visualize.html

2.1 Python Basics

20 / 73

Python Basics (II)

21 / 73

Basic Types

No type declaration needed — Python does that for you on the fly

22 / 73

Type Conversions

check the type of a variable by typing >>> type(a)

23 / 73

String Literals

24 / 73

String Literals II

25 / 73

Operators

26 / 73

Your first exercise to compute

27 / 73

Operators II

28 / 73

Operators III

The “%” operator computes the remainder of integer division.

>>> 9 % 2
1

29 / 73

Assignments

30 / 73

Assignments II

31 / 73

The “is” Operator

The is operator allows you to test whether two names refer to the
same object:
>>> a = 1
>>> b = 1
>>> a is b
True

32 / 73

The help Function

33 / 73

Functions

Attention — rounding towards ZERO

34 / 73

How to execute source code
example0_hello.py

→ Store a file hello.py with this content:

print('Hello, world!')

→ Execute it with $ python hello.py

35 / 73

2.2 Loops and Lists
example3_while.py

▶ The while loop is used to repeat a set of statements as long as a condition is
true.
▶ Example: The task is to generate the rows of the table of C and F values.
▶ The C value starts at -20 and is incremented by 5 as long as C ≤ 40.
▶ For each C value we compute the corresponding F value and write out the two

temperatures.
▶ In addition, we also add a line of hyphens above and below the table. We postpone

to nicely format the C and F columns of numbers and perform for simplicity a plain
print(C, F) statement inside the loop.

print("------------------") # table heading
C = -20 # start value for C
dC = 5 # increment of C in loop
while C <= 40: # loop heading with condition

F = (9.0/5)*C + 32 # 1st statement inside loop
print(C, F) # 2nd statement inside loop
C = C + dC # 3rd statement inside loop

print("------------------") # end of table line (after loop)

$ python example3_while.py

-20 -4.0
-15 5.0
-10 14.0
-5 23.0
0 32.0
5 41.0
10 50.0
15 59.0
20 68.0
25 77.0
30 86.0
35 95.0
40 104.0

36 / 73

Loop Implementation of a Sum
example4_sum.py

sin(x) ≈ x − x3

3! +
x5

5! −
x7

7! + · · ·

x=1.2 # assign some value
N=25 # maximum power in sum
k=1
s=x
sign=1.0
import math
while k<N :

sign = -sign
k = k+2
term = sign*x**k/math.factorial(k)
s = s + term

print('sin(%g)=%g approximation with %d terms' % (x, s, N))

37 / 73

Lists

▶ Up to now a variable has typically
contained a single number.

▶ Sometimes numbers are naturally grouped
together.

▶ A Python list can be used to represent
such a group of numbers in a program.

▶ With a variable that refers to the list, we
can work with the whole group at once,
but we can also access individual elements
of the group.

Fig. From H.P. Langtangen

▶ The figure illustrates the difference
between an int object and a list object.

▶ In general, a list may contain a sequence
of arbitrary objects in a given order.
Python has great functionality for
examining and manipulating such
sequences of objects.

38 / 73

Basic operations in Lists → type

▶ To create a list with the numbers from the first column in our table, we just put
all the numbers inside square brackets and separate the numbers by commas:

>>> C = [-10, -5, 0, 5, 10, 15, 20, 25, 30] # create list
>>> C.append(35)
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35]

▶ Two lists can be added:

>>> C = C + [40, 45]
>>> C
[-10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

39 / 73

Basic operations in Lists → type
▶ New elements can be inserted anywhere in the list:

>>> C.insert(0,-15)
>>> C
[-15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]

▶ With del C[i] we can remove an element with index i from the list C.

>>> del C[2] #delete 3rd element
>>> C
[-15, -10, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> del C[2] #delete what is now the 3rd element
>>> C
[-15, -10, 5, 10, 15, 20, 25, 30, 35, 40, 45]
>>> len(C) #length of list
11

40 / 73

How to represent Vectors

A Python program may use a list or tuple to represent a vector:

v1 = [x, y] #list of variables
v2 = (-1, 2) #list of numbers
v3 = (x1, x2, x3) #tuple of variables
from math import exp
v4 = [exp(-i*0.1) for i in range(150)]

41 / 73

Basic operations (II) — “for loop”
▶ When data are collected in a list, we often want to perform the same operations on each

element in the list.
▶ We then need to walk through all list elements. Computer languages have a special

construct for doing this conveniently.
▶ This construct in Python and many other languages called a “for loop”.

example5_forloop.py

degrees = [0, 10, 20, 40, 100]
for C in degrees:

print("list element:", C)
print("The degrees list has",

len(degrees),
"elements")

index = 0
while index < len(somelist)
element = somelist[index]
<process element>
index+=1

example6_forloop.py

Cdegrees = []
n = 21
C_min = -10
C_max = 40
dC = (C_max - C_min)/float(n-1)
increment in C
for i in range(0, n):

C = -10 + i*dC
Cdegrees.append(C)
Fdegrees = []

for C in Cdegrees:
F = (9.0/5)*C + 32
Fdegrees.append(F)

for i in range(len(Cdegrees)):
C = Cdegrees[i]
F = Fdegrees[i]
print("%5.1f %5.1f" % (C, F))

42 / 73

2.3. Functions and Branching

43 / 73

How to define new functions (II)

44 / 73

How to define new functions (III)

45 / 73

How to define new functions (IV)
example7_greet.py

46 / 73

How to define new functions (V)

47 / 73

Modules

48 / 73

Modules II

49 / 73

Conditionals

50 / 73

Branching — example “hat” function
example9_branching.py

Branching in general

N(x) =


0, x < 0
x, 0 ≤ x < 1
2 − x, 1 ≤ x < 2
0, x ≥ 2

if condition1:
<block of statements>
elif condition2:
<block of statements>
elif condition3:
<block of statements>
else:
<block of statements>
<next statement>

def hat_function(x):
hat function

if x < 0:
return 0.0

elif 0 <= x < 1:
return x

elif 1 <= x < 2:
return 2 - x

elif x >= 2:
return 0.0

print(hat_function(1.4))

51 / 73

Exercises

52 / 73

2.4. Input Data

C = 21
F = (9./5)*C + 32
print(F)

▶ In this program, C is input data in the sense that C must be known before the
program can perform the calculation of F.

▶ The results produced by the program, here F, constitute the output data. Input
data can be hard-coded in the program as we do above.

▶ We explicitly set variables to specific values C = 21.
▶ This programming style may be suitable for small programs.
▶ In general, however, it is considered good practice to let a user of the program

provide input data when the program is running. → There is then no need to
modify the program itself when a new set of input data is to be explored.

53 / 73

Reading Keyboard Input
example10_read.py

We may ask the user a question C=? and wait for the user to enter a number. The
program can then read this number and store it in a variable C.

C = input('C=? ')
C = float(C)
F = (9./5)*C + 32
print(F)

The raw_input function always returns the user input as a string object. That is, the
variable C above refers to a string object.
If we want to compute with this C, we must convert the string to a floating-point
number: C = float(C).

54 / 73

Reading from Command Line
example11_readsys.py

▶ Inside the program we can fetch the text ”number” as sys.argv[1]. The sys module has a list
argv containing all the command-line arguments to the program, i.e., all the ”words” appearing
after the program name when we run the program.

▶ Here there is only one argument and it is stored with index 1 . The first element in the sys.argv
list, sys.argv[0], is always the name of the program.

▶ A command-line argument is treated as a text, so sys.argv[1] refers to a string object. Since
we interpret the command-line argument as a number and want to compute with it, it is
necessary to explicitly convert the string to a float object.

Run as:
$python
example11_readsys.py 2

import sys
print("This is the name of the script: ", sys.argv[0])

C = input("please write the degrees celcius outside:")

F= 9*float(C)/5 + 32
print("it is ", F , " degrees F")

print("Number of arguments: ", len(sys.argv))
print("The arguments are: " , str(sys.argv))

55 / 73

Reading from a File
example12_readfile.py

▶ We have a text file containing numbers: say data.txt
▶ We want to get first column in a1, second in a2 and so on.
▶ Note: there are plenty of option on how to read from files → RTFM

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

a1 = []
a2 = []
a3 = []
a4 = []

with open('data.txt') as f:
for line in f:

data = line.split()
a1.append(int(data[0]))
a2.append(int(data[1]))
a3.append(int(data[2]))
a4.append(int(data[3]))

print(a1, a2, a3, a4)

f.close()

56 / 73

Other things to learn about Python

57 / 73

Do not re-invent the wheel — NumPy

58 / 73

Do not re-invent the wheel — SciPy

59 / 73

Pandas

60 / 73

Writing to a file — e.g. with numpy
example12_writefile.py

import numpy as np
mat=np.matrix([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
print(mat)
np.savetxt('matrix.txt',mat,fmt='%.2f')

61 / 73

Curve Plotting

▶ Visualizing a function f(x) is done by drawing the curve y = f(x) in an x − y
coordinate system.

▶ When we use a computer to do this task, we say that we plot the curve.
▶ Technically, we plot a curve by drawing straight lines between n points on the

curve.
▶ The more points we use, the smoother the curve appears.
▶ Suppose we want to plot the function f(x) for a ≤ x ≤ b.

xi = a + ih, h =
b − a
n − 1 .

62 / 73

Matplotlib: publication quality plotting library

63 / 73

Matplotlib: a basic example
example13_plot.py

Let us plot the curve s for values between 0 and 2 . First we generate equally spaced
coordinates for t. Then we compute the corresponding s values at these points, before
we call the plot(t,s) command to make the curve plot.

import matplotlib.pyplot as plt
import numpy as np

t = np.arange(0.0, 2.0, 0.01)
s = 1 + np.sin(2*np.pi*t)
plt.plot(t, s)

plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('About as simple as it gets, folks')
plt.grid(True)
plt.savefig("test.png")
plt.show()

To include the plot in electronic documents, we need a hardcopy of the figure in PostScript, PNG, or
another image format. The savefig function saves the plot to files in various image formats.

64 / 73

Want more?

PyPI is the index of Python software
packages. It currently indexes 506,250
packages, so the choice is really vast.
Almost all packages can be installed with a
single command by running pip install
packagename.

65 / 73

III. Nonlinear equations & optimization.

▶ Our course heavily relies on solving large systems of nonlinear
equations or (un-) constraint optimization problems.

▶ In Python, you have plenty of options, e.g.:
▶ SciPy.org
▶ PyOpt.org
▶ IPOPT (https://www.coin-or.org/lpopt;

https://github.com/xuy/pyipopt)

66 / 73

https://www.coin-or.org/lpopt
https://github.com/xuy/pyipopt

Constrained optimization with SciPy

The minimize function also provides an interface to several constrained minimization
algorithm.
As an example, the Sequential Least SQuares Programming optimization algorithm
(SLSQP) will be considered here.
This algorithm allows to deal with constrained minimization problems of the form:

minF(x)
subject to Cj(X) = 0, j = 1, . . . , MEQ

Cj(x) ≥ 0, j = MEQ + 1, . . . ,M
XL ≤ x ≤ XU, I = 1, . . . ,N.

67 / 73

Constrained optimization — example

As an example, let us consider the problem of optimizing the
function:

f(x, y) = 2xy + 2x · x2 · 2y2

subject to an equality and an inequality constraints defined as:

x3 − y = 0
y − 1 > 0

68 / 73

Example for Optimization
import numpy as np
from scipy.optimize import minimize
def func(x, sign=1.0):

""" Objective function """
return sign*(2*x[0]*x[1] + 2*x[0] - x[0]**2 - 2*x[1]**2)

def func_deriv(x, sign=1.0):
""" Derivative of objective function """
dfdx0 = sign*(-2*x[0] + 2*x[1] + 2)
dfdx1 = sign*(2*x[0] - 4*x[1])
return np.array([dfdx0, dfdx1])

"""
Note that since minimize only minimizes functions, the sign parameter is
introduced to multiply the objective function (and its derivative) by -1 in order to perform a maximization.
Then constraints are defined as a sequence of dictionaries, with keys type, fun and jac.
"""
cons = ({'type': 'eq',

'fun' : lambda x: np.array([x[0]**3 - x[1]]),
'jac' : lambda x: np.array([3.0*(x[0]**2.0), -1.0])},
{'type': 'ineq',
'fun' : lambda x: np.array([x[1] - 1]),
'jac' : lambda x: np.array([0.0, 1.0])})

"""a constrained optimization as:"""

res = minimize(func, [-1.0,1.0], args=(-1.0,), jac=func_deriv,
constraints=cons, method='SLSQP', options={'disp': True})

print(res.x)

69 / 73

Root finding (nonlinear equations)

Finding a root of a set of non-linear equations can be achieve using the root function.
Several methods are available, amongst which hybr (the default) and lm which
respectively use the hybrid method of Powell and the LevenbergMarquardt method
from MINPACK.
Consider a set of non-linear equations

x0 cos (x1) = 4,
x0x1 − x1 = 5.

70 / 73

Example for Nonlinear Equations
demo/python_examples/opt_nonlinear/example2_nonlinear.py

import numpy as np
from scipy.optimize import root

def func2(x):
f = [x[0] * np.cos(x[1]) - 4, x[1]*x[0] - x[1] - 5]
df = np.array([[np.cos(x[1]), -x[0] * np.sin(x[1])],[x[1], x[0] - 1]])
return f, df

sol = root(func2, [1, 1], jac=True, method='lm')
solution = sol.x

print("the solution of this nonlinear set of equations is: ", solution)

71 / 73

IV. Pointers to tutorials and literature

There is an unlimited amount of tutorials and source codes on the web available. Here
is an incomplete list:
▶ The Python tutorial: http://docs.python.org/tutorial
▶ Quantecon
▶ Books: A Primer on Scientific Programming with Python (Hans Petter

Langtangen)

72 / 73

http://docs.python.org/tutorial
https://python-programming.quantecon.org/intro.html

Questions?

1. Advice — RTFM https:
//en.wikipedia.org/wiki/RTFM

2. Advice — http://lmgtfy.com/
http://lmgtfy.com/?q=
introduction+to+python

73 / 73

https://en.wikipedia.org/wiki/RTFM
https://en.wikipedia.org/wiki/RTFM
http://lmgtfy.com/
http://lmgtfy.com/?q=introduction+to+python
http://lmgtfy.com/?q=introduction+to+python

