
Lecture “Advanced Data Analytics” 

Problem Set 1

Simon Scheidegger

This problem set will give you the chance to practice the content thought in the first two lectures of 
this course.

Exercise 1
 
Monte Carlo estimation are a broad class of computational algorithms that rely on repeated random 
sampling to obtain numerical results. One of the basic examples of getting started with the Monte 
Carlo algorithm is the estimation of Pi.
The idea is to simulate random (x, y) points in a 2-D plane with domain as a square of side 1 unit. 
Imagine a circle inside the same domain with same diameter and inscribed into the square. We then 
calculate the ratio of number points that lied inside the circle and total number of generated points. 
Refer to the image below:

We know that area of the square is 1 unit sq while that of circle is
Now for a very large number of generated points,

 

that is,

The beauty of this algorithm is that we don’t need any graphics or simulation to display the 
generated points. We simply generate random (x, y) pairs and then check if
If yes, we increment the number of points that appears inside the circle. In randomized and 
simulation algorithms like Monte Carlo, the more the number of iterations, the more accurate the 
result is.



Your task is to implement a code that computes Pi as described above. Moreover, your code should 
print out a table how the accuracy of the estimate of Pi improves with the number of samples.

Exercise 2

Make a program that simulates flipping a coin N times. Print out “tail” or “head” for each flip and 
let the program count the number of heads. (Hint: Use r = random.random() and define head as r <=
0.5, or draw an integer among {1, 2} with r = random.randint(1,2) and define head when r is 1.)

Exercise 3

Computing probabilities of rolling dice with Python.

1. You throw a die. What is the probability of getting a 6?

2. You throw a die four times in a row. What is the probability of getting 6 all the times?

3. Suppose you have thrown the die three times with 6 coming up all times. What is the probability 
of getting a 6 in the fourth throw?

4. Suppose you have thrown the die 100 times and experienced a 6 in every throw. What do you 
think about the probability of getting a 6 in the next throw?

First try to solve the questions from a theoretical or common sense point of view. Thereafter, make 
functions for simulating cases 1, 2, and 3.

Exercise 4

Compute probabilities of throwing two dices with Python.

Make a computer program for throwing two dice a large number of times. Record the sum of the 
eyes each time and count how many times each of the possibilities for the sum (2, 3, . . . , 12) 
appear. A dictionary with the sum as key and count as value is convenient here. Divide the
counts by the total number of trials such that you get the frequency of each possible sum. Write out 
the frequencies and compare them with exact probabilities. (To find the exact probabilities, set up 
all the 6 × 6 possible outcomes of throwing two dice, and then count how many of
them that has a sum s for s = 2, 3, . . . , 12). 

Exercise 5

In a laboratory experiment waves are generated through the impact of a model slide into a wave 
tank. (The intention of the experiment is to model a future tsunami event in a fjord, generated by 
loose rocks that fall into the fjord.) At a certain location, the elevation of the surface, denoted by η , 
is measured at discrete points in time using an ultra-sound wave gauge. The result is a time series of
vertical positions of the water surface elevations in meter: η(t0), η (t1 ), η (t2 ), . . . , η (tn ).
There are 300 observations per second, meaning that the time difference between two neighboring 
measurement values η (ti ) and η (ti+1 ) is h = 1/300 second.

Write a Python program that accomplishes the following tasks:



1. Read h from the command line.

2. Read the η values in the file dat/gauge.dat into an array eta.

3. Plot eta versus the time values (use matplotlib)

4. Compute the velocity v of the surface by the formula

Plot v versus time values in a separate plot.

5. Compute the acceleration a of the surface by the formula

Plot a versus the time values in a separate plot.

Exercise 6

 Differentiate noisy signals in Python.

The purpose of this exercise is to look into numerical differentiation of time series signals that 
contain measurement errors. This insight might be helpful when analyzing the noise in real data 
from a laboratory experiment in Exercise 5.

1. Compute a signal

Display η_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arraybar versus time t_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arrayi in a plot. Choose A = 1 and T = 2π . Store the η_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arraybar values in an array
etabar.

2. Compute a signal with random noise E_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arrayi ,

E_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arrayi is drawn from the normal distribution with mean zero and standard deviation σ = 0.04A. Plot 
this η_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arrayi signal as circles in the same plot as η_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arraybar. Store the E_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arrayi in an array E for later use.

3. Compute the first derivative of η_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arraybar by the formula

and store the values in an array detabar. Display the graph.

4. Compute the first derivative of the error term by the formula



and store the values in an array dE. Calculate the mean and the standard deviation of dE.

5. Plot detabar and detabar + dE. Use the result of the standard deviation calculations to explain the 
qualitative features of the graphs.

6. The second derivative of a time signal η_bar versus time t_i in a plot. Choose A = 1 and T = 2π . Store the η_bar values in an arrayi can be computed by

Use this formula on the etabar data and save the result in d2etabar. Also apply the formula to the E 
data and save the result in d2E. Plot d2etabar and d2etabar + d2E. Compute the standard deviation 
of d2E and compare with the standard deviation of dE and E. Discuss the plot in light of these 
standard deviations.

Exercise 7

Consider the following list of household appliances.

a) List for all of the seven features whether is is a nominal, ordinal, or a numerical feature.

b) Encode the nominal and ordinal features such that one can use them for linear regression.

Exercise 8 (solve after lecture week 3!)

Go to the dat/  Boston.dat   and look at the data set of housing prices from Boston.

a) Read the description of the features, and explain whether they are nominal, ordinal, or numerical.

b) Use the numerical features to fit linear models (you can choose the features to fit – based on 
generating scatter plots and correlations of the different features). Use scikit-learn.
Report the Regression parameters, R², and the MSE. Do not only use linear regression, but also 
higher-order polynomials.

Category Prize kWh/Jahr Energy Efficiency Weight Brand Sales

Freezer 699 210 A 99 Mühle 27.96
Washing machine 399 302 B 50 Boss 99.75
Freezer 779 475 C 75 Nerd 33.558
Washing machine 989 705 E 125 Prolet 3.996
tableware dryer 199 790 D 42 Boss 2.786
tableware dryer 479 810 D 37 Mühle 21.076



c) Implement the linear regression in Python yourself. To do so, use the formula

derived in the lecture. Compare the resulting Parameters, R², and the MSE computed here with the 
onces computed in b).

 
Exercise 9

Solve the optimization problem stated below with a Python optimization tool-kit of your choice.
To do so, solve the problem once by providing the i) analytical Jacobian and Hessian, 
and once by providing ii) a first-order finite-difference implementation of the Hessian and Jacobian 
to the optimizer. 
Compare the results of i) and ii) – what do you observe? 


